

EXPERIMENTAL INVESTIGATION OF THE DYNAMIC ANGLE OF GRAIN SLIDING AND ITS IMPACT ON SHIP'S SAFETY.

FINAL DISSERTATION FOR THE DEGREE OF MASTER OF SCIENCE IN MARINE TECHNOLOGY

SUBMITTED BY: FRANCISCO JOSE JUARRERO DE VARONA PROJECT SUPERVISOR: DOCTOR EVANGELOS BOULOUGOURIS

STUDENT DECLARATION

I hereby declare that this dissertation contains only work completed by myself except for information obtained from written and online literature and university sources, which has been duly referenced and acknowledged in accordance with the university's policy on plagiarism.

Name: Francisco Jose Juarrero de Varona

Montreal, October 18th 2018

ACKNOWLEDGEMENTS

I want to thank York Overseas and Mr. Tony Porraccio for his continued support and facilitating samples of grain for the experiment.

I want to thank Capt. Philip Anderson, Chief of Technical department of NCB for offering to be the industrial mentor and his interest in this work.

I want to thank Canfornav Ltd and Mr. Errol Francis, Mr. Jason Cook and Mr. Steve Amato for granting me access to their database and allowing me to sit in their offices with their computers to calculate the loading conditions.

I want to thank the Canadian Institute of Marine Engineers CIMARE and specially Mr. Mario Rossi and Mr. Christopher King for generously funding the construction of the scale model.

I want to thank Dr. Alicia Juarrero, Georgetown University and Dr. Alfredo Menendez, Université de Sherbrooke, for proof reading this thesis.

I want to thank Prof. François Duhaime and Mr. Pouyan Pirnia, from the Construction engineering department at École de technologie supérieure in Montreal, for their interest in the experiments and their valuable suggestions and feedback.

One of the greatest rewards of doing the MTEC program was meeting some remarkable professors and fellow students. I want to thank my project supervisor Doctor Evangelos Boulougouris for his enthusiasm, insight, tutoring and support. I also want to thank two MTEC students with whom I shared several modules and mutual support: Mr. Andrew Martin who very generously did the CAD drawing for the model and Ms. Lindsey Tickle who provided me with samples and articles on how to structure the final project.

Finally, I want to thank my family and specially my wife and two sons for their encouragement, patience and support.

ABSTRACT

The carriage of grain by sea is one of the most regulated operations in the maritime industry given the risks of sliding accidents, Biran (2017) cites Arndt (1968) referring to 31 incidents involving sliding loads, 13 of them leading to sinking of vessels. The procedures and calculations for loading grain have been long established and are well known in the industry. Loading and carrying grain entails having as many cargo compartments loaded to their maximum capacity as possible to avoid the likelihood of shifting and the effect of heeling moments (IGC, 1991). This is, in most occasions, not viable. Having several parcels with different grades to be segregated, loaded and discharged in different ports, results in going to the sea with a number of slack compartments.

There are various solutions to this dilemma, one of the most practical being the use of ballast to improve stability by increasing the displacement and reducing the vertical height of the center of gravity of the vessel. But even this solution has setbacks: the increase in draught or what is worse, the risk of exceeding the seasonal load line. To counteract for the former, the ballast is pumped out once the port limits are reached provided the ship's rolling is not near the angle of repose. This procedure has been widely performed without the benefit of experimental data on the dynamic angle of shifting of the grain (the only available data is the static angle of repose) and a reliable calculated safety margin. Moreover, no records were found of experimental physical measurements of the grain's angle of shifting in dynamic conditions on ships.

This project undertakes the construction of a typical bulk carrier cargo hold, suspended in a rotating mechanism, partially filled with samples of grain loaded in terminals, to perform the experimental measuring of the angle of shifting in dynamic conditions, and to determine its equivalence with the static angle of repose. It also performs a probabilistic analysis of the safety margins between the angle of rolling at sea and the angle of shifting at sea (dynamic), all in order to provide a tool to ship operators and masters for safe deballasting operations at sea when loaded with grain.

CONTENT

DEC	CLARATI	NC			i
ACk	NOWLE	DGEME	NTS		ii
ABS	TRACT				iii
COI	NTENT				iv
LIST	OF FIG	URES			vii
LIST	OF TAE	BLES			viii
ABF	REVIATIO	DNS			ix
1	INTRO	DUCTIO	Ν		1
2	BACKO	ROUND	AND LITERA	TURE	2
	2.1	Grain	definition and	d properties	3
		2.1.1	Definition o	f grain	3
		2.1.2	Other comr	nodities treated as grain	3
		2.1.3	Physics of g	rain cohesion	4
	2.2	Comp	liance with in	tact and grain stability criteria	4
		2.2.1	Grain stabil	ity criteria	5
		2.2.2	Calculation	of the grain stability criteria	7
	2.3	Failure	e to comply w	vith the grain stability criteria	9
		2.3.1	Grain stabil	ity criteria not met	9
		2.3.2	Preferred p	rocedure to meet the grain stability criteria and setbacks	10
		2.3.3	Available so	lution when failing to comply with the grain stability criteria.	10
			Pros, cons a	and risks	
3	OBJEC	TIVES			12
4	METH	ODOLOG	GΥ		13
	4.1	The n	nathematical	model	13
		4.1.1	Reference v	vessel	13
		4.1.2	Loading cor	ndition and stability variables	13
			4.1.2.1	Cargo distribution	14
			4.1.2.2	Bunkers, ballast and fresh water distribution and	14
				sequences	

		4.1.3	Period of roll	17
4	.2	The pł	nysical model	19
		4.2.1	Scale applied to the original plans (from midship section and GA)	19
		4.2.2	Sketch with scaled dimensions	21
		4.2.3	CAD model based on exact dimensions scaled 1:40	22
		4.2.4	Final drawings of the project by USIMM drawing desk	23
		4.2.5	Physical model assembled	25
		4.2.6	Support and assembly	25
		4.2.7	Mechanism for limiting the angle of roll and for damped oscillations	27
4	.3	Experi	ment	29
		4.3.1	Hypothesis	29
		4.3.2	Assumptions	29
		4.3.3	Tolerances	29
		4.3.4	Grain Samples	30
		4.3.5	Measurements of the AOR	30
		4.3.6	Measurements of the AOS with fixed axis	31
		4.3.7	Measurements of the AOS with model suspended on springs	33
4	.4	Data p	processing	34
		4.4.1	Comparison of values of AOR with AOS from the experiment	34
		4.4.2	Correlation between AOR and AOS	35
4	.5	Use of	probabilistic method for processing the data	37
		4.5.1	Readings of angle of roll	37
		4.5.2	Calculation of standard deviations of readings of angle of roll	37
		4.5.3	Calculation of standard deviations of measured AOR - AOS	38
		4.5.4	Safety margin between angle of roll and AOS - AOR	38
		4.5.5	Montecarlo simulation for random angle of roll and AOR, and	39
			probabilities of shifting	
R	ESUL	ΓS		41
C	ISCUS	SSION		47
C	ONCL	USIONS		54
R	ECON	IMEND	ATIONS	55
В	IBLIO	GRAPHY	,	56

10 APPENDIX

10.1	Appendix 1 - Methodology for calculating grain stability					
10.2	Append	ix 2- Actual grain calculations as performed by Port Warden on	59			
	Canadia	in ports				
10.3	Append	ix 3- Considerations on the compliance of relevant regulations while	65			
	deballas	sting at sea				
10.4	Append	ix 4- General Arrangement Plan	66			
10.5	Append	ix 5- Loading conditions	67			
	10.5.1	Departure condition with full bunkers and without ballast	67			
	10.5.2	Departure condition with full bunkers and ballasted	82			
	10.5.3	Intermediate condition with intermediate bunkers and ballasted	96			
	10.5.4	Arrival condition with minimum bunkers and ballasted	110			
	10.5.5	Arrival condition with minimum bunkers while deballasting	124			
	10.5.6	Arrival condition with minimum bunkers and without ballasted	138			
10.6	Append	ix 6- Excel spreadsheet with calculations of Period of Roll using various	152			
	method	ls				
10.7	Append	ix 7- Cohesion experiment (Vanderwall et Lumay)	155			
10.8	Appendix 8- Original tags with data of samples used 156					

LIST OF FIGURES

Figure 1	Weather criterion	5
Figure 2	Stability curve and grain stability criteria	8
Figure 3	Transversal plane from midship section with dimensions	20
Figure 4	Longitudinal plane from midship section, with dimensions	21
Figure 5	Sketch of physical model with scaled dimensions	22
Figure 6	Rendering of the CAD model	22
Figure 7	Sheets (4) of the design drawing and specs prepared by USIMM	23
Figure 8	Photograph of the model, assembled	25
Figure 9	Photograph of the support	26
Figure 10	Photograph of the model and support assembly with fixed axis	26
Figure 11	Photograph of the model and support assembly with springs	27
Figure 12	Scale for the angle limiting mechanism	27
Figure 13	Photograph of the angle limiting mechanism with longitudinal sliding bars and scale	28
Figure 14	The spring and cable assembly for damped oscillations	28
Figure 15	Sample preparation: breaking seal and opening the bag	31
Figure 16	Preparing the experiment, pouring the sample grain on the table	31
Figure 17	Performing the measurements of AOR with level indicator	31
Figure 18	Detail of measurement of AOR taken with the level indicator	31
Figure 19	The set up for the tests, with fixed axis	32
Figure 20	Rolling the model and measuring the AOS, with fixed axis	32
Figure 21	Rolling the model and measuring the AOS, closer view, with fixed axis	32
Figure 22	Detail of protractor with reading of the permanent angle of list after the shifting.	32
Figure 23	The set up for the tests, with springs	34
Figure 24	Rolling the model and measuring the AOS, with springs	34
Figure 25	Rolling the model and measuring the AOS, closer view, with springs	34
Figure 26	Detail of protractor with reading of the permanent angle of list after shifting.	34
Figure 27	Pearson correlation graph AOR-AOS	35
Figure 28	Pearson correlation graph AOR-AOS after changes by -0.5/+0.5	36
Figure 29	Montecarlo simulation calculation in Excel	40
Figure 30	Laminar sliding of the grain	50

LIST OF TABLES

Table 1	The model vessel's particulars	13
Table 2	The cargo plan	14
Table 3	Bunkers, ballast and fresh water distribution and sequences	15
Table 4	Summary of the results of stability variables for the various loading conditions	16
Table 5	Summary of calculations of Period of Roll	18
Table 6	Summary of symbols and dimensions from Figure 3	20
Table 7	Summary of symbols and dimensions from Figure 4	21
Table 8	Summary of grain samples information	30
Table 9	Readings of angle of roll	37
Table 10	Measured angle of repose AOR of samples and average values	41
Table 11	Summary of the AOR measured	41
Table 12	Measured angle of shifting AOS of samples with fixed axis assembly (T ϕ 2 sec)	42
Table 13	Measured angle of shifting AOS of samples with fixed axis assembly (T ϕ 8 sec)	42
Table 14	Measured angle of shifting AOS of samples with model on springs (T ϕ 2 sec)	43
Table 15	Measured angle of shifting AOS of samples with model on springs (T ϕ . 8 sec)	43
Table 16	Comparison of values of AOR and AOS from the experiments	43
Table 17	Data and results of AOR to AOS ratio and correlation	44
Table 18	Data and results of AOR to AOS ratio and correlation, with adjustments	45
Table 19	Calculation of mean values and standard deviations of angle of roll	46
Table 20	Calculation of mean values and standard deviations of AOR and AOS	46

ABREVIATIONS

AOR	Angle of repose
Ak	Bilge keel area
AOS	Angle of shifting
В	Breadth of the ship
bk	Bilge keel width
BM	Bending moment
Cb	Block coefficient
Cu	Upper deck area coefficient
D	Depth of the ship
FS	Free surface
GM	Metacentric height. Vertical distance from the centre of gravity to the transverse metacentre
GZ	Righting arm. Projection of G over the vertical from the new center of buoyancy after the inclination
Н	Effective depth
НМ АСТ	Heeling moment actual (or transversal)
HM ALW	Heeling moment allowable
IGC	International Grain Code
im	Radio of gyration (Biran)
IMSBC	International Maritime Solid Bulk Cargoes code
К	Radio of gyration (Rawson and Tupper)
KG	Vertical distance from the keel to the centre of gravity
КM	Vertical distance from the keel to the metacentre
KN	Projection of centerline at base line over the vertical from the new center of buoyancy after the inclination
LBP	Length between perpendiculars
LCF	Longitudinal center of flotation, measured either from the midship or the aft perpendicular
LOA	Length overall
RAO	Response amplitude operator
SF	Stowage factor. Ratio of volume to weight. The inverse of the density
SF	Shear force
SOLAS	International Convention for the Safety of Life at Sea
Т	Draught of the ship
Тφ	Natural period of roll

SYMBOLS

- θ Angle of heel
- λ Heeling moment arm
- Δ Displacement of the vessel
- φ Angle of roll
- ϕ_f Angle of flooding

1. INTRODUCTION

Grain and oilseeds, as main components of the food industry, are one of the pillars of the world trade and transportation. An estimated 371 million metric tons of grain (corn, wheat and rice) and 481 million metric tons oil seeds are exported worldwide every year for a total of 852 million metric tons, of which 80% is carried by sea, representing about 6% of the world seaborne trade, according to data from York Overseas Ltd .

Accordingly, all aspects related to the safety of carriage of grain, are of paramount importance.

The safety regulation of the grain transportation has, unequivocally, been crucial to the protection of seafarer's life at sea, and to the safety of navigation, but it has also brought operational and commercial challenges to shipowners and traders.

This project is a not only an empirical research on a parameter such as the angle at which the grain shifts in simulated rolling: the dynamic angle of shifting and how it is correlated to the angle of repose. By calculating safety margins between the angle of rolling and the dynamic angle of shifting it also constitutes a modest attempt to both easing such challenges and improving the safety of the grain carriage.

2. BACKGROUND AND LITERATURE REVIEW

Ships carrying grain have to comply with regulations and criteria as set out in SOLAS (1974) chapter VI and the IGC (1991). These criteria refer to minimum standards of intact stability and the vessel's response in the event of shifting of the grain. Sliding of grain is undesirable because of the heeling moment created which will cause the ship to experience large inclinations and loss of stability. Accordingly, any measure to prevent this would be aimed at preventing the shifting or minimizing the heeling moments.

As the shifting of grain is a consequence of cargo holds not being loaded in full, the first approach would be to fill up all or as many holds as possible. In the author's working experience of over 10 years, this could be limited by operational constraints such as number of grades, discharge port rotations, possibility or not of commingling, etc. When holds cannot be filled, the only other manner of preventing shifting is by securing (strapping) the grain. This is highly expensive and only specialized ports have the operational capability and know-how to perform it.

For reducing the heeling moments, either selecting the holds with taper end to be partially filled or trimming of the holds ends (for non-self-trimmers) is also considered, but the latter could be impractical due to availability restrictions or financial considerations and has limited effectiveness, also in the author's experience. If none of the above works, the only alternative is to increase the permissible heeling moments by augmenting the displacement or reducing the vessel's vertical center of gravity KG, or both. The reduction of free surface is a quick method of decreasing the KG but the most effective way of increasing the displacement and reducing the KG simultaneously thus improving the stability is by taking ballast in lower tanks.

This practice on the other hand has the issue of increasing the ship's draft sometimes beyond the available depth at then loading or discharging port. It is common practice in such cases to dump the ballast before entering or to take it after exiting it, subject to the vessel technically being within port limits or under local jurisdiction (i.e. not on an international voyage), and the weather conditions not being conducive to rolling motion in the region of the angle of repose (Kamal, 2016). The above has been done without a numerical tool for estimating at what angle of roll the grain might start sliding in dynamic conditions, based on the known angle of repose, and probabilistic methods for calculating a safety margin between the angle of rolling during de-ballasting operations and post-de-ballasted.

The literature and studies available related to grain stability are scarce, and most of them replicate the contents of the IGC (1991) or the booklet prepared by NCB (1994). Much of the above statements are based on the working experience of the author supervising the loading of grain. With respect to grain sliding, a wealth of articles and literature is available for measuring the angle of repose, or the study of the cohesive forces of granular material, but with respect to the sliding of grain in dynamic conditions, although experiments have been done to determine its angle of repose in systems like a rotating drum (Al-Hashemi and Al-Amoudi 2017), little could be found for a simulation of sliding in sea motion conditions, except for advanced studies done by Spandonidis and Spyrou (2015) about rolling on vessels carrying granular material where the granular behaviour under sea motion conditions was mathematically modeled and simulated. They recognized the lack of research on this subject.

2.1 - GRAIN DEFINITION AND PROPERTIES

2.1.1- Definition of grain

According to IGC (1991), the term grain applies to: wheat, maize or corn, oats, rye, barley, rice, pulses, seeds and processed forms thereof, whose behaviour is similar to that of grain in its natural state. The behaviour of interest is their property to shift once a specific angle of repose is reached and exceeded. Also, the following can be defined:

Angle of repose AOR: Means the maximum slope angle of non-cohesive - i.e. free flowing - granular material. It is measured as the angle between a horizontal plane and the cone slope of such material (IMSBC 2008).

Angle of shifting AOS: Not defined in the literature. We will use this term to refer to the angle of heel of the ship at which a particular grain with a certain angle of repose will shift in dynamic conditions, as measured in experimental tests. It is therefore a property intrinsic to the material on a certain ship in certain dynamic condition.

2.1.2- Other commodities be treated as grain

The forewords of the code IMSBC (2008) reads: The international maritime community recognized the challenges of the carriage of bulk cargoes in the 1960 International Conference on Safety of Life at Sea. At the time it wasn't possible to define requirements for the carriage of bulk cargoes, except for grain, however, it did recommend the preparation of an international code for safe practices on bulk cargoes. From that effort, the chapter VI of SOLAS and the Grain Code saw the light, and subsequently, the Bulk Cargoes BC code, which transformed into The International Maritime Solid Bulk Cargoes Code (IMSBC code).

While it excluded the cargoes listed in the grain code, the IMSBC (2008) on the other hand defines Noncohesive materials as dry materials that readily shift due to sliding during transport. The Dry materials with non-cohesive properties, therefore exhibit an angle of repose. In section 5 – Trimming procedures, the code stipulates that non-cohesive cargoes with an angle of repose less than or equal to 30 degrees, which flow freely like grain, shall be carried according to the provisions applicable to the stowage of grain cargoes. Example of these commodities are many fertilizers such as Ammonium Nitrate.

Although the above dry materials don't have the use, biological and chemical properties of grains as defined in the Grain Code, for the purpose of transversal stability they share a common characteristic: they both are non-cohesive, both readily shift due to sliding during sea transport, both having an angle of repose. Accordingly, when it comes to compliance of intact stability, both grain cargoes and solid bulk cargoes which are non-cohesive and with AOR less or equal to 30 degrees, have to be treated same and the calculation for compliance of grain stability criteria performed.

2.1.3- Physics of grain cohesion

Granular friction is the main property responsible for granular cohesion. It was first described by Coulomb in 1776 (Sharan and Lee, 1970) and can be expressed as:

$$\tau = \sigma \tan \phi + C \tag{2.1}$$

where

τ- Shear stress at failure σ- Normal stress

 ϕ - Angle of internal friction

C - Cohesion coefficient

For non-cohesive granular material such as wheat, C = 0.

According to the studies on compaction dynamics by Lumay et al. (2017), the complex behaviour of an assembly of particles depends on interparticle forces. Those forces are conditioned amongst others by:

- granular packing fraction: Increases with vibrations, tendency to form a denser system.
- shape, size, geometry, humidity: Polydispersity, cylindrical vs spherical, etc.
- friction / roughness: Texture of grain shell.
- cohesion: Van de Waal forces, changed if foreign particles are introduced.

Opposing these forces is the weight. In the paper Measuring the flowing properties of powders and grain (Lumay et al.,2012), to explain cohesion the authors use a heap of sugar, one with granulometry of about 0.5 mm, the other of 50 μ m. While the former adopts the normal heap, the latter shows a cohesive heap as the cohesive forces related to the humidity, electric charges and Van der Waals forces are greater than the weight of the grain. SEE APPENDIX 12.

Accordingly, reducing the size of the grain as we did with the vessel would have changed size, geometry shape but more importantly: weight of grain and friction (the exposed cut off side would have a smaller roughness and friction).

2.2- COMPLIANCE WITH INTACT AND GRAIN STABILITY CRITERIA

Ships engaged in international voyages have to meet stability requirements as per intact and damaged stability codes and class rules (SOLAS 1974), but also, as per the above, when carrying grain or non-cohesive bulk cargoes with AOR less than or equal to 30 degrees, ships have to meet the requirements for carriage of grain as set out in the SOLAS (1974) and IGC (1991), as mentioned in the ISC (2008).

The stability criteria contained in the Intact Stability code ISC (2008) can be summarized as follows:

Criteria regarding the righting lever (GZ) curve:

- 1. $A(\phi = 0 \text{ to } 30^\circ) \ge 0.055 \text{ meters-radians.}$
- 2. A($\phi = 0$ to 40° or $\phi_{f'}$ if less) ≥ 0.09 meters-radians.

- 3. A($\phi = 30^{\circ}$ to 40° or 30° and ϕ_{f} , if less) ≥ 0.03 meters-radians
- 4. At $\phi \ge 30^{\circ} \text{ GZ} \ge 0.2 \text{ meters}$
- 5. GZ_{max} shall occur at $\phi \ge 25^{\circ}$
- 6. $GM_0 \ge 0.15 \text{ m}$

Severe wind and rolling criterion: Considering a steady wind perpendicular to the centerline results in wind heeling lever l_{w1} and new position of equilibrium φ_0 . Wave actions cause the ship to roll windward from φ_0 to φ_1 and then a wind gust results in a gust wind heeling lever l_{w2} :

- 7. $\phi_0 \le 16^\circ$ or 80% of $\phi_{deck inmersion}$ (whichever is less)
- 8. $A_b \ge A_a$

where A_b area between GZ and l_{w2} up to φ_2 , A_a area between GZ and l_{w2} up to φ_1 and $\varphi_2 = \varphi_f$, 50° or φ_c (second intercept of GZ and l_{w2} curves). For better reference, see Figure 1:

Figure 1: The weather criterion

Special criteria: For cargo ships carrying grain in bulk, the intact stability shall comply with the requirements of IGC (1991)

2.2.1 Grain stability criteria

In addition to the above criteria, when carrying grain ships have to meet minimum criteria with regards to the intact stability as per originally in SOLAS (1974) and subsequently IGC (1991). In this regard a vessel complying with the intact stability might not meet the grain stability. The correlation between the two criteria will be discussed below in Chapter 6.

The ISC Chapter 3 treats the grain stability as a special criteria for certain types of ships and in its chapter 3.4 - Cargo ships carrying grain in bulk, it reads: *The intact stability of ships engaged in the carriage of grain*

shall comply with the requirements of the International Code for the Safe Carriage of Grain in Bulk adopted by resolution MSC 23(59) (ISC 1991).

<u>SOLAS</u>

The original text of SOLAS 1974, Chapter VI Carriage of Grain, consisted of the following:

Part A: General Provisions, Regulations 1 to 13.

Part B: Calculation of Assumed Heeling Moments, Sections I to V.

Part C: Grain Fittings and Securing, Sections I and II.

It was in Part A, Regulation 4 – Intact Stability Requirements, where these criteria are listed [5]:

- 1- The angle of heel due to the shift of the grain not to exceed 12 degrees.
- 2- In the Statically Stability Diagram, the net or residual area between the heeling arm curve and the righting arm curve up to the angle of heel of maximum difference between the ordinates of the two curves, or 40 degrees or the "angle of flooding", whichever is the least, shall in all conditions of loading be not less than 0.075 metre-radians.
- 3- the initial metacentric height, after correction for the free surface effects of liquids in tanks, shall be not less than 0.30 metres.

In the present text of SOLAS Convention (amended by 2002 Conference), chapter VI – Carriage of Cargoes, Part C – Carriage of Grain, Regulation 8 – Defines de Grain Code and the term Grain, Regulation 9 – Requirements for cargo ships carrying grain, the obligation to carry on board a document of authorization to carry grain.

<u>IGC</u>

The Grain Code consists of the following:

Resolution MSC.23 (59) adopted in May 23rd 1991 and entered in forced January 1st 1994, with revised part C of chapter VI of SOLAS and adopting the new IGC.

Annex Part A: Specific requirements, regulations 1 to 18.

Annex Part B: Calculation of assumed heeling moments and general assumptions.

Appendix: Incorporates the Part C of chapter VI of SOLAS.

It is in Part A, Regulation 7 – Stability Requirements A 7.1, where these criteria are listed. They replicated the same criteria as in the previous Chapter VI of SOLAS except for an amendment to the criteria related to the angle of heel:

- 1- The angle of heel due to the shift of the grain not to exceed 12 degrees or <u>the angle at which the</u> <u>deck edge is immersed, whichever is lesser.</u>
- 2- In the Static Stability Diagram, the net or residual area between the heeling arm curve and the righting arm curve up to the angle of heel of maximum difference between the ordinates of the two

curves, or 40 degrees or the "angle of flooding", whichever is the least, shall in all conditions of loading be not less than 0.075 metre-radians.

3- the initial metacentric height, after correction for the free surface effects of liquids in tanks, shall be not less than 0.30 metres.

2.2.2- Calculation of the grain stability criteria

1- The angle of heel after the shifting of the grain:

$$Tan \theta^{o} = \frac{Sum of transversal heeling moments}{\Delta X GM} X 57.3$$
(2.2)

2- The residual area between heeling arm and righting arm curves, from the angle of heel to the max ordinate or 40 degrees:

For the ordinates of the heeling arm curve.

$$\lambda_{0} = \frac{\text{volumetric heeling moments}}{\Delta X SF}$$
(2.3)

$$\lambda_{40^{\circ}} = 0.8 \times \lambda_{\circ} \tag{2.4}$$

For the ordinates of the righting arm curve either use GZ curves or KN curves.

Where: $GZ = KN - (KG \sin \theta^{o})$

And θ^{o} is given values from 5° to 45°

Then the ordinates measured from the heeling arm to the righting arm curves are taken or calculated as: Y = GZ - λ_i

With the values of λ_i the area is resolved as a Simpson product:

$$A = \frac{\operatorname{interval} X \left(\lambda_1 + 4\lambda_2 + 2\lambda_3 + \dots + 4\lambda_n + \lambda_{n+1}\right)}{3}$$
(2.5)

3- The initial metacentric height corrected for free surface (fluid):

$$GM_{\circ} = KM - (KG + FS_{corr})$$
(2.6)

See in the Appendix 2 an example of the calculation sheet using the form from Transport Canada.

Also, in Part A, regulations 6.3.1 and 6.3.2 stipulate the ship shall have available information regarding assumed volumetric heeling moments of cargo compartments, filled or partly filled, as well as tables or curves of maximum permissible heeling moments for varying displacements and varying values of KG,

allowing the Master to demonstrate compliance with the requirements of A 7.1 (only for ships built after the entry into force of the code). This is better explained in the National Cargo Bureau booklet General Information for Grain Loading NCB(1994):

"In lieu of calculating the actual GM, angle of heel, and residual area which will obtain for a given displacement, KGv and total grain heeling moment and then testing these values against the requirements of the Code, the naval architect pre-calculates the maximum heeling moment which will meet all three of these conditions for every combination of displacement and KGv within the range of the ship's operating conditions and lists them in curves or a table which is part of the data in the ship's approved Gain Loading Information".

As per the above paragraph, the criteria for grain stability compliance are reduced to calculate and compare the transversal heeling moments to the maximum permissible or allowable heeling moment (NCB 1994). The calculation of transversal heeling moment consists of taking the values of volumetric heeling moments from curves or tables and applying the SF and corrections, the total transversal heeling moment is calculated. The value of the maximum permissible or allowable heeling moment can be obtained from tables, with the vessels Displacement and KG as argument. Therefore, the Displacement and KG have to be calculated by listing the weights, the coordinates of their vertical center of gravity, and summing weights and vertical moments, as it is done for any cargo ship (NCB,1994). The below Figure 2 summarises the grain criteria:

Figure 2: Stability curve and grain stability criteria

For further guidance on how the grain calculation is done and an actual example, SEE APPENDIX 1,2.

In this chapter we refer to the intact stability and the grain stability. There is a correlation between both as they both assess the vessel's response to inclinations: The intact stability examines the values of GZ and areas of the curve at different inclinations. It also considers a dynamic situation where the ship experiences a heel under the effect of a sustained wind and wind gust, from the rolled position on the opposite side, comparing the areas of residual stability under the curve of GZ for the effect of the wave pressure and to the area of residual stability under the curve of GZ for the effect of the wind pressure. It also considers the

minimum GM and angle of heel from the sustained wind for a maximum value or percentage of the angle of deck immersion, whichever is less.

The grain stability on the other hand, evaluates the area of residual stability under the curve of GZ for the effect of shifting of the grain, and the resulting angle of heel. This heel is permanent regardless of the weather condition, heading, etc. The conditions for grain stability are more stringent. While the intact stability requires the angle of heel resulting from the sustained wind not to exceed 16° (or 80% of the angle of deck immersion), and the GM not to be less than 0.15 meters, the grain stability requires the angle of heel resulting from the sustained 12° (or the angle of deck immersion) and the GM not to be less than 0.15 meters, the grain stability requires the angle of heel resulting from the shifting of the grain not to exceed 12° (or the angle of deck immersion) and the GM not to be less than 0.30 meters. It could be inferred, that a vessel complying the intact stability criteria not necessarily complies with the grain criteria, as this is the case for three out of six conditions in this work, but a ship complying with the grain stability criteria should meet the intact stability criteria (See Table 4 which compares the grain and intact stability parameters for all six conditions). While the intact stability criteria depend exclusively on the ship's design and loading condition, the grain stability also depends on the potential of shifting. Therefore, a ship may have a large initial GM and large values of GZ at different angles with all holds partially filled with grain and meet the intact stability criteria, but in the event of shifting, she would experience such heeling moment that she could list heavily or even capsize and hence fail the grain stability criteria.

2.3- FAILURE TO COMPLY WITH THE GRAIN STABILITY CRITERIA

2.3.1- Grain stability criteria not met

When the above criteria are not met, it is obvious that there are two ways of improving the stability condition: by reducing the Total Heeling Moments or by increasing the Allowable Heeling Moment (NCB, 1994).

- Reducing the Total Heeling Moment:
 - 1- By planning a better distribution of the cargo: reducing the amount of slack holds and / or selecting for slack hold a smaller compartment or a compartment with taper end. These compartments have smaller heeling moments on account of reduced volume and width (volumetric moments are proportional to volume and transversal distance of the new position of the center of gravity to the centerline).
 - 2- In slack holds to avoid the grain surface to be at the greatest breadth level (normally at 50% for typical single skin bulk carrier with hopper and topside slopes), giving preference to slack holds almost empty or almost full.
 - 3- By reducing the void spaces of holds filled (trimming the ends).
 - 4- By securing the grain (strapping).
- Increasing the Allowable Heeling Moment:
 - 1- By increasing the Displacement (replenishing bunkers, loading more cargo if it is an option, taking ballast).

2- By reducing the vessels KG (avoiding tween-decks on MPPs, avoiding liquids on high tanks, reduction of free surface, taking ballast in double bottom tanks).

The above steps although not explicitly listed in the referred NCB booklet, can be inferred from the notes contained therein.

2.3.2- Preferred procedure to meet the grain stability criteria and setbacks.

The most common effective approach to deal with non-compliance of grain stability is the use of ballast in double bottom, after the amount of slack holds has been minimized, for the reasons explained above. However, the problem arises when there is a draft limitation at the loading or discharge port. Most commonly at the discharge port. The increase of displacement from the ballast taken causes the vessel's sinking sometimes beyond the maximum permissible draft. This will result in either a change in the discharge port rotation, when possible, or a cancellation of the contract with the economic consequences.

A typical case of draft limitation at loading would be the American and Canadian grain ports along the Great Lakes and seaway system. For such cases where the weather conditions – especially from spring to fall when the seaway is opened for navigation – are fairly better than what can be expected in oceanic navigation, an alternative calculation has been implemented for the so called "sheltered waters", but when this occurs at discharge ports, the sheltered water condition doesn't apply either because the ports are opened to the sea (West Africa) or because it hasn't been instituted.

2.3.3 - Available solution when failing to comply with the grain stability criteria. Pros, cons and risks.

Organizations without personnel (ashore or at sea) with experience in the grain trade will take the shortest and more costly approach: refuse the contract or reduce the amount of cargo to fit in full holds with minimum slack holds. Both approaches have a substantial economic consequence: under present market conditions the loss of a contract means back to a pool of shipowners and operators looking for employment. A reduced freight or hire means a meagre revenue.

On the other hand, organizations with greater grain experience will ask the Master to take the full cargo and ballast to improve the grain stability condition, discharging the ballast once reaching port limits and before entering subject to safe weather conditions (usually rolling not exceeding the AOR). This is done on the premise that during roll, the mass of granular material stays in place until the angle of heel exceeds the angle of repose (Biran, 2003).

The Pros of this solution:

- 1- This procedure is not in contradiction with any regulation: SEE APPENDIX 3
- 2- The procedure is safe, as long as it is done while the rolling does not reach the angle of shifting of the cargo:

One of the requirements for loading grain or non-cohesive cargoes in bulk with an AOR of less than 30 degrees, is to level the surface horizontally. This has three goals:

- To reduce the heeling moment to a minimum according to the height of the grain (the tables of heeling moments are calculated for leveled grain on the basis of the void volume

available for shifting, not considering any residual heeling moment due to a wedge on the surface of the not leveled grain)

- To attain the max AOR (for a grain with AOR 25 degrees, if the surface is inclined 2 degrees it will shift at 23 degrees of inclination of the vessel)
- To avoid a permanent list and with it a reduced intact stability of the vessel.

For a grain with a leveled surface, the ship's roll would have an effect equivalent to that of the slope of the tilting table (Ileleji and Zhou, 2007): the grain slides at the point when the inclination equals the AOR. Considering this in a static environment (no wind, heave, slamming shocks, accelerations, etc.) it is safe to say that as long as the rolling does not reach the declared AOR of the cargo, the grain will not shift, and the conditions calculated in the grain stability form, such as angle of heel after the shift, or area of residual stability will not be met.

The Cons of this solution and risks:

- 1- It lacks the support of a study on the dynamic behaviour of the grain and the effects of the ship's motion on the AOR. The open sea conditions met in some port limits (port access open to the ocean) are far from static, hence, a safety margin has to be considered. This has been done empirically without a consistent study or data available. In order to keep this procedure safe in view of the uncertainties on the ratio of AOR to angle of shifting resulting from the dynamic motions and forces, large margins are taken. There is no methodology on what those margins are or should be. Considering the responsibility for human life and property that the safety of the ship implies, every operator will seek to reduce risks that haven't been calculated. In my own experience, such margins are set as maximum 5- 10 degrees of rolling for wheat with AOR 25 degrees. The substantial safety margin covers uncertainties not only related to the dynamic angle of shifting of the grain, but also the angle of roll. Although the angle of roll is a piece of information available to the ship's staff (simply by reading the on-board inclination instrument) the input will be limited to a number of random readings which might miss larger values.
- 2- The economic cost: When weather conditions do not warrant a safe discharge of the ballast, the vessel has to keep it on board preventing her from entering the port. This could take hours or days until the weather improves (normally de-ballasting all double bottom tanks can take up to 10 hours or even more). As explained above in the absence of a complete study on this subject, the safety margins proposed are large and to be extra cautious the master might cancel the discharge of the ballast even with rolling of less than 10 degrees. This means that even in conditions that could be feasible for operating the vessel, the crew and operators will refuse to do so. The delay in entering the port will result in expenses equivalent to the time cost of the vessel or off hire.

3. OBJECTIVES

These experiments are based on the hypothesis that grains under dynamic conditions will exhibit a different cohesive behaviour and therefore the shifting will occur at angles smaller than the AOR, as suggested by Biran (2003): *The accelerations induced by the ship motions can cause load shifting at angles that are smaller than the angle of repose.* It is a premise of this work that the flaw in the procedure discussed in 2.3.3 is the lack of information available to ship masters and operators about the dynamic behavior of the grain in sea motion, and the influence of such motion in the actual angle of inclination when the sliding of the grain occurs (angle of shifting). The overall aim of this work is the research into this dynamic behaviour and how it correlates with the static behaviour of the grain, to use the values obtained experimentally for determining safety margins between the angle of rolling and the angle of shifting derived from the angle of repose, and using probabilistic methods, to calculate the probability of failure and reliability of the system.

The specific objectives of the project are:

- 1. To determine through experimental tests the angle of shifting of the grain under simulated dynamic conditions of sea rolling, and to compare them with the measured static angle of repose.
- 2. To collect readings from ocean going vessels of the angle of roll, in order to assess the dispersion of the data measured and to determine the standard deviations of those measurements.
- 3. To determine safety factors for calculating the maximum angle of roll for safe deballasting from the known angle of repose of the grain and to evaluate the reliability of the results. With these values to research on a possible methodology, as an example for a safe procedure of deballasting before entering ports (or ballasting after leaving) when the grain stability criteria and the draft cannot be simultaneously met.

4. METHODOLOGY

The methodology selected involves measuring the roll when the grain starts sliding or the angle of shifting, under dynamic conditions. It is to be simulated with the use of a scaled model of a bulk carrier's cargo hold suspended on a frame, therefore it also entails the design and construction of the model. These results will allow us to compare the measured angle of shifting with the previously measured static angle of repose of the grain, to establish a correlation between the two, to obtain the mean ratio and to propose a constant for conversion

4.1 - THE MATHEMATICAL MODEL

4.1.1. - Reference vessel.

The model is based on an actual bulk carrier vessel. The model vessel chosen is a handysize Laker with combined single hull transversally framed holds 2,3 and 5 with top side tanks and double bottom tanks with hopper slopes, and holds 1,4,6 with double skin side panels and smaller top side tanks. The transversal bulkheads are corrugated type.

The model vessel's particulars:

Vessel	Description	Units
Name	Nonesuch	N/A
L.O.A.	185.000	meters
L.B.P.	178.000	meters
Breadth (Extreme)	23.700	meters
Depth (Extreme)	14.644	meters
Draft (Summer)	10.416	meters
Displacement (Summer)	39,440.000	metric tons
Lightship	8,541.000	metric tons
Gross Tonnage	19,612.000	tons
Net Tonnage	10,162.000	tons

Table 1: The model vessel's particulars.

For General Arrangement Plan of the reference vessel, SEE APPENDIX 4.

4.1.2 - Loading condition and stability variables.

In order to make experimental measurements of the angle of heel at which the grain will shift, some variables are to be determined: vertical center of rotation (draft at LCF), GM, rolling period, etc. To establish

these variables, a number of loading conditions were calculated for a cargo distribution and variations of consumables, on a model vessel in order to select the one with poorer stability results and more sensitive to inclinations for the experiment: ARRIVAL WITHOUT BALLAST.

4.1.2.1 - Cargo distribution.

The cargo condition chosen is a full load of grain wheat, grade 2 CWRS (Canadian Wheat Red Spring) with stowage factor SF 43.5 cf/mt. The following hypothetical constraints apply:

- 1. There are two grades to be separated by holds (grade A 5,200 MT + grade B 21,000 MT).
- 2. There is a draft limitation at the discharge (arrival) port of 9.40 (density 1.025).

The above constraints have the following consequences:

- 1. The separation results in slack holds, at least one per grade, unless the quantity to load has a tolerance and it fits the exact volume of the holds.
- 2. The draft limitation calls for two slack holds in order to adjust the trim for an even keel arrival.
- 3. The combination of 1 and 2 results in three slack holds.

The above is the most common scenario for shipments of grain.

In the loading condition chosen one grade is loaded in holds 1 and 4 and the other in holds 2,3,5,6.

The cargo plan:

Compartment	Cargo	Weight	Volume %
Hold No 1	Wheat CWRS Grade A	2400.00	62
Hold No 2	Wheat CWRS Grade B	6377.50	100
Hold No 3	Wheat CWRS Grade B	6149.00	100
Hold No 4	Wheat CWRS Grade A	2800.00	54
Hold No 5	Wheat CWRS Grade B	6146.50	100
Hold No 6	Wheat CWRS Grade B	2327.00	53
Total		26200.00	

Table 2- The cargo plan.

For the above cargo loading condition, a number of variants were checked:

- Departure condition, full bunkers, without ballast.
- Departure condition, full bunkers, ballasted.
- Intermediate condition, half bunkers, ballasted.
- Arrival condition, minimum bunkers, ballasted.
- Arrival condition, minimum bunkers, while de-ballasting.
- Arrival condition, minimum bunkers, without ballast.

4.1.2.2 - Bunkers, ballast and fresh water distribution and sequences:

Compartment	BUNKERS				BALLAST			
·	DEPARTURE ARRIVAL		BALLASTE	Đ	DE-BALLAS	STED		
No 1 HFO	40.00	20	40.00	20				
No 2 HFO P	150.00	42	10.00	3				
No 2 HFO S	150.00	42	10.00	3				
No 3 HFO P	10.00	6	10.00	6				
No 3 HFO S	40.00	23	40.00	23				
No 4 HFO P LS	95.00	95	5.00	5				
No 4 HFO S LS	95.00	95	5.00	5				
No 2 HFO Sett	15.00	47	15.00	47				
No 2 HFO Serv.	15.00	50	15.00	50				
No 1 HFO Serv.	7.00	26	7.00	26				
No 1 HFO Sett.	7.00	22	7.00	22				
No 1 HFO Overflow	2.00	17	2.00	17				
Subtotal	626.00		167.20					
MDO Storage P	55.00	78	55.00	78				
MDO Storage S	55.00	78	55.00	78				
MDO Serv.	11.00	55	11.00	55				
MDO Sett. P	9.00	22	9.00	22				
Subtotal	130.00		130.00					
Fore Peak					2.00	0	2.00	0
No 1 WBT P					4.00	0	4.00	0
No 1 WBT S					4.00	0	4.00	0
No 2 DBWT P					3.00	1	3.00	1
No 2 DBWT S					3.00	1	3.00	1
No 2 TBWT P					1.00	1	1.00	1
No 2 TBWT S					1.00	1	1.00	1
No 3 DBWT P					552.20	100	5.00	1
No 3 DBWT S					552.20	100	5.00	1
No 3 TBWT P					1.00	1	1.00	1
No 3 TBWT S					1.00	1	1.00	1
No 4 WBT P					634.90	100	5.00	1
No 4 WBT S					634.90	100	5.00	1
No 5 DBWT P					4.00	200	4.00	2
No 5 DBWT S					4.00	2	4.00	2
No 5 TBWT P					1.00	1	1.00	1
No 5 TBWT S					1.00	1	1.00	1
No 6 BWT P					685.70	100	4.00	1
No 6 BWT S					685.70	100	4.00	1
No 7 DBWT P					3.00	1	3.00	1
No 7 DBWT S					3 00	1	3 00	1
After Peak					1.00	0	1.00	<u>1</u>
No 4 hold WB					0.00	0	0.00	0
Subtotal					3.782.60	5	65.00	-
		ERESH	Μ/ΔΤFR		0,702.00			
	DEPARTI	JRE	ARRIVA	L.				
FWT P	45.00	59	45.00	- 59				
FWTS	100.00	68	100.00	68				
Distill WTK	5.00	11	5.00	11				
Cooling	20.00	75	20.00	75				

The below table shows the maximum and minimum quantities of fuel and ballast for the selected conditions. The intermediate condition of fuel is the mean between the departure and arrival.

Table 3- Bunkers, ballast and fresh water distribution and sequences.

The reason for the different options with same cargo condition, is that the variation in the amount of liquids on board and the free surface moments when not full or empty, influence the values of KG, GM and GZ, as well as allowable heeling moments.

Below is a summary of the results of stability variables for the various loading conditions:

PARAMETERS		DEPARTURE	DEPARTURE	INTERME-	ARRIVAL	ARRIVAL	ARRIVAL
		WITHOUT	WITH	DIATE WITH	WITH	WHILE DE-	WITHOUT
		BALLAST	BALLAST	BALLAST	BALLAST	BALLASTING	BALLAST
		Δ = 35,731.71	Δ = 39,449.31	Δ = 39,219.31	Δ = 38,989.31	Δ = 37,039.71	Δ = 35,271.71
	FWD	9.44	9.89	9.87	9.84	9.62	9.40
DRAFT	AFT	9.58	10.89	10.81	10.72	10.06	9.40
	MID	9.51	10.39	10.34	10.28	9.84	9.40
	LCF	9.51	10.40	10.35	10.30	9.84	9.40
KG solid		8.12	7.84	7.89	7.93	7.93	8.22
KMT		9.95	10.01	10.01	10.00	9.96	9.44
GM solid		1.82	2.17	2.12	2.07	2.03	1.72
FS CORRECTI	ON	0.31	0.17	0.17	0.17	0.34	0.31
KG FLUID		8.43	8.02	8.06	8.10	8.27	8.53
GM FLUID		1.51	2.00	1.95	1.90	1.69	1.41
GM _{min} curves		0.86	0.86	0.86	0.86	0.86	0.86
			INTACT	STABILITY CRITE	RIA		
A(φ 0 -30°) ≥ 0.055		0.247	0.295	0.290	0.284	0.265	0.234
A(φ 0-40°) ≥ 0.09		0.458	0.519	0.511	0.502	0.480	0.439
A(φ 30-40°) ≥ 0.03		0.211	0.223	0.221	0.218	0.216	0.204
GZ φ 30°≥	2 0.2 m	1.034	1.115	1.101	1.085	1.063	1.000
GZ _{max} φ2	≥ 25°	49°	49°	49°	49°	49°	49°
$GM_0 \ge 0.1$	5 m	YES	YES	YES	YES	YES	YES
$A_b \ge A_a$		0.607 > 0.112	0.554 > 0.151	0.545 > 0.148	0.535 > 0.145	0.585 > 0.134	0.581 > 0.096
φ ₀ ≤16°		1.187°	0.761°	0.786°	0.814°	0.978°	1.299°
COMPLY		YES	YES	YES	YES	YES	YES
			GRAIN	STABILITY CRITER	RIA		
HM ALW > HM ACT		12,913 < 16,889	18,412 > 16,889	17,897 > 16,889	17,344 > 16,889	14,825 < 16,889	11,938 < 16,889
GRAIN $\theta \le 12^{\circ}$		14.8°	11.2°	11.4°	11.7°	13.3°	15.7°
COMPLY		NO	YES	YES	YES	NO	NO
			LONGITUDIN	NAL STRENGTH C	RITERIA		
BM MAX < 1	00 (%)	72	78	75	72	63	58
SF MAX < 10	0 (%)	59	83	82	82	76	71
COMPLY		YES	YES	YES	YES	YES	YES

Table 4- Summary of the results of stability variables for the various loading conditions.

For each condition, (SEE APPENDIX 5-10):

- General information of stability (weight distribution, vertical and longitudinal moments, drafts and trim, GM corrected, longitudinal stresses, etc).

- Grain stability calculations using the form approved by the Canadian administration, seagoing and/or sheltered waters.
- GZ Curves.

4.1.3 - Period of roll.

The rolling for each vessel is a function of its beam and metacentric height in broad terms. The time required to complete a cycle of oscillations is termed the natural period of roll (To). In real dynamic conditions the dynamic response is also a function of the wave spectra and the response amplitude operator RAO, both depending on significant wave height, wave frequency and the latter on the ship's main and bilge keel dimensions (Frederic Deybach1997). However, as the prediction of sea conditions in certain areas, as well as certain ship responses are out of the scope of this work, it will not be calculated here.

During the experimental tests, it is important to simulate the accelerations that the cargo would be subjected to by trying to equate the frequency of the model's rolling to the frequency of oscillation for the To. As the experiment is conceived to determine the angle at which the grain slides, regardless of sea condition or vessel's type or response, only the natural period of roll was accounted for.

A substantial number of studies are dedicated for calculating the natural To.

- According to Rawson and Tupper (1968):

$$T_{\phi} = 2 \pi \frac{K}{(g \, GM_T)^{\frac{1}{2}}} \tag{4.1}$$

where GM FLUID = 1.41 for the chosen condition at T = 9.4

And

$$\left(\frac{K}{B}\right)^2 = F\left[C_B C_U + 1.10 C_U \left(\frac{H}{T} - 2.20\right) + \frac{H^2}{B^2}\right]$$
 (4.2)

therefore

$$K = B x \sqrt{F \left[C_B C_U + 1.10 C_U \left(\frac{H}{T} - 2.20 \right) + \frac{H^2}{B^2} \right]}$$
(4.3)

Where

F = constant, 0.125.

T = Moulded draft = draft for condition - keel thickness.

A = Lateral area of deck and projections = $A_{DECK} + A_{ERECTIONS} + A_{FREEBOARD}$

 $A_{DECK} = L \times W \times \cos \Theta$, (L = Length of deck, W = Camber = 0.5)

 $A_{\text{ERECTIONS}} = L \times W \times \cos \Theta$, L = Length of superstructure, W = Height of superstructure)

 $A_{FREEBOARD} = L_{PP} * (D - T)$ - this data is inaccurate, as the ships side is not a rectangle

From the computer calculations, the windage area A was taken and the calculation done with this area also, with this data considered more reliable than that of the projected lateral area calculated.

H = Effective depth = D + A / L_{PP}

 $C_{\rm U}$ = Upper deck area coefficient = $\frac{1}{LB}$

And K = radius of gyration.

- According to Biran (2003), the above formula can be reduced to:

$$T_{\phi} = \frac{cB}{\sqrt{GM}} \tag{4.4}$$

C = 2Im/B with values of im proposed B/3 (Costaguta 1981) or 0.35B (shipyards).

where Im = radius of gyration.

- According to ISC (2008) and Wawrzyński and Krata (2016) the coefficient C which relates the radius of gyration K or i_m to the breadth, can be calculated as:

$$T_{\phi} = \frac{2B}{\sqrt{GM}}$$
 where c = 0.373 + 0.023B/T - 0.043L/100 (4.5)

Method	GM = 2.00	GM = 1.41
	departure with ballast	arrival without ballast
Rawson and Tupper	12.0532	14.9560
Biran (mean)	11.4516	13.6387
ISC / Wawrzyński and Krata	11.8232	14.0813

Table 5: Summary of calculations of Period of Roll.

The two values of Biran and ISC / W&K are similar, and their mean value is around 12 - 14 seconds for the departure ballasted - arrival after deballasting condition. The value selected as reference is that for ISC. The T ϕ was also calculated with scaled dimensions using the above formulas resulting in 2.2737 - 2.7079 seconds for same conditions as a reference.

However, the right scaling of the model, simulating the accelerations taking place during the experiment vs sea rolling, are considered as per Bertram (2011). There are forces and accelerations involved in the period of roll, some related to velocities of fluids which are not applicable, hence we will concentrate on the forces only. Geometrical and kinematical similarity between the ship and the model results in the following scale factors for accelerations:

$$\mathbf{a}_{\mathrm{s}} = \frac{\lambda}{\tau^2} \mathbf{x} \, \mathbf{a}_{\mathrm{m}} \tag{4.6}$$

$$\nabla_{\rm s} = \lambda^3 \, {\rm x} \, \nabla_{\rm m} \tag{4.7}$$

The dynamical similarity means that the ratio of all forces acting on the full-scale ship to the corresponding forces acting on the model is constant:

$$\mathbf{F}_{\mathbf{s}} = \mathbf{k} \, \mathbf{x} \, \mathbf{F}_{\mathbf{m}} \tag{4.8}$$

Those forces can be inertial (F = m x a) and gravity (m = $\rho x \nabla$). Accordingly, the scale factor:

$$k = \frac{F_s}{F_m} = \frac{\rho_s}{\rho_m} x \frac{\nabla_s}{\nabla_m} x \frac{a_s}{a_m}$$
(4.9)

This equation (4.9) is the Newton's law of similarity.

If we substitute the equation 4.6 and 4.7 in 4.9 we obtain:

$$\mathbf{k} = \frac{\rho_{\rm s}}{\rho_{\rm m}} \mathbf{x} \, \frac{\lambda^3 \, \mathbf{x} \nabla_{\rm m}}{\nabla_{\rm m}} \, \mathbf{x} \, \frac{\lambda \, \mathbf{x} \, \mathbf{a}_{\rm m}}{\tau^2 \, \mathbf{x} \, \mathbf{a}_{\rm m}} = \frac{\rho_{\rm s} \, \lambda^4}{\rho_{\rm m} \, \tau^2} \tag{4.10}$$

As for gravitational forces, the scale factor can be also applied as follows:

$$k_g = \frac{G_s}{G_m} = \frac{\rho_s}{\rho_m} x \frac{\nabla_s}{\nabla_m} = \frac{\rho_s}{\rho_m} x \lambda^3$$
(4.11)

If dynamical similarity means that all scale factors are the same, then k = k_g , \therefore equating 4.10 and 4.11:

$$\frac{\rho_{\rm s}\,\lambda^4}{\rho_{\rm m}\,\tau^2} = \frac{\rho_{\rm s}}{\rho_{\rm m}}\,{\rm x}\,\lambda^3\,\therefore\,\tau^2\,=\lambda\,\therefore\tau\,=\sqrt{\lambda} \tag{4.12}$$

Applying the equation in 4.12 to our calculated period of roll of the vessel for the arrival (worst) condition for the scale selected factor 40:

- ISC / Wawrzyński and Krata, τ_s = 14.0813, $\sqrt{\lambda}$ = 6.3245, τ_m = 2.2264 sec.

During the experiment the model was rolled at about 14, 10, 8 and 2 seconds, with the two first yielding similar results and the second different results. The final results were taken from the experiments with rolling at 8 seconds, for further results and explanation see Chapters 5 and 6.

For details of the calculations, SEE APPENDIX 11.

4.2 - THE PHYSICAL MODEL

4.2.1 - Scale applied to the original plans (from midship section and GA).

The cargo holds model and the supporting mechanisms were designed and assembled by the author. The scale was chosen based on the breadth of the ship for a feasible model's size: 1:40. No formulas were applied to the original vessel for scaling down. In studying model scaling it was noted the formulas with

Reynolds, Froude, Weber and Euler numbers are applied to models when tested in fluids at certain speed, according to Voraa and Bauge (2016). The cargo hold chosen was No 3 (center hold, typical self-trimming hold of a bulk carrier). The dimensions from Midship Section plan and General Arrangement plan are adjusted according to the scale selected as follows:

- Transversal plane: From the midship section plan, as per Figure 3 below.

Figure 3: Transversal plane from midship section with dimensions.

AT	Width of Hatch opening	8,700 x 2 = 17,400	435.00 mm
ΒT	Width of cargo hold	11,850 x 2 = 23,700	592.50 mm
CT	Width of tank top	10,000 x 2 = 20,000	500.00 mm
DT	Width of hopper base	11,850 - 10,000 = 1,850	46.25 mm
ET	Width of Top side	11,850 - 8,700 = 3,150	78.75 mm
FV	Height BL to hatch cover	16,300	407.5 mm
GV	Height BL to main deck	12,470 + 2,284 = 14,754	368.85 mm
ΗV	Height BL to tank top	1,800	45.00 mm
IV	Height BL to top of hopper slope	3,650	91.25 mm
JV	Height from hopper slope to top side	10,651 - 3,650 = 7,001	175.02 mm
KV	Height of top side on side	12,470 + 2,284 = 14,754 - 10,651 = 4,103	102.58 mm
LV	Height of top side on hatch coaming	2,284	57.1 mm
MV	Height of hatch coaming	16,300 -12,470 + 2,284 = 1,546	38.65 mm

Table 6: Summary of symbols and dimensions from Figure 1.

- Longitudinal plane: From the General Arrangement plan, as per Figure 4 below.

Figure 4: Longitudinal plane from midship section, with dimensions.

AL	Length of hatch opening	19,200	480.00 mm
BL	Length of cargo hold	19,200 + 3,550 + 2750 = 25,500	637.50 mm
CL	Length of tank top	Fr 125 - Fr 152 = 27 x 0.8 = 21.6 m = 21,600	540.00 mm
DL	Length of forward crossdeck	2,750	68.75 mm
EL	Length of aft crossdeck	3,550	88.75 mm
FL	Length of forward upper stool	2,750 - 450 = 2,300	57.50 mm
GL	Length of aft upper stool	3,350 - 450 = 2,900	72.50 mm
HL	Length of forward lower stool	Fr 152 - Fr 154 = 2 x 0.8 = 1.6 m = 1,600	40.00 mm
IL	Length of aft lower stool	Fr 123 - Fr 125 = 2 x 0.8 = 1.6 m = 1,600	40.00 mm
NV	Height of the forward upper stool	14,350 - 12,470 = 1,880	47.00 mm
OV	Height of the aft upper stool	14,350 - 12,470 = 1,880	47.00 mm

Table 7: Summary of symbols and dimensions from Figure 2.

4.2.2 - Sketch with scaled dimensions.

The dimensions above calculated are applied to the 3D sketch which serves as reference for preparing the cad drawings that feed the CNC machine. The sketch as shown in Figure 5.

Figure 5: Sketch of physical model with scaled dimensions.

4.2.3 - CAD model based on exact dimensions scaled 1:40, as per Figure 6 below:

Figure 6: Rendering of the CAD model.

For the construction of the model the computerized machining method was selected considering the weight of grain to be placed inside (about 50 lbs). A local company USIMM in Pointe aux Trembles, Montreal (http://www.usimm.ca) with CNC Machines undertook the project, cutting out Russian plywood 18 mm for the frame and 2.5 mm acrylic inserts for the end panels, which allows the grain inside of the hold to be seen. The tolerances of the machined pieces were 0.005 inches or 0.13 mm.

4.2.4 - Final four sheets of drawings of the project by USIMM drawing desk as per Figure 7:

Figure 7: Sheets (4) of the design drawing and specs prepared by USIMM.

4.2.5 - Physical model assembled.

The parts cut by USIMM, including the acrylic panels, were assembled using carpenters glue and screws of the size recommended by them. The roller bearing was inserted in the slot corresponding to the scaled height of the LCF in the mathematical model. The result in Figure 8:

Figure 8: Photograph of the model, assembled

4.2.6 - Support and assembly.

The support was made of 2 mm thick aluminium angle bars of with transversal frames for supporting the weight of the model with cargo, all resting on an extended base for preventing longitudinal and lateral shifting (Figure 7). A vertical longitudinal reinforcement was used in way of the pivoting point where the load of the model and cargo is applied, thus, providing two supporting points for the pivoting axis at both sides. Subsequent to the experiments with the above set up, the fixed axis mechanism was replaced by springs in order to replicate the sea motion with all six degrees of freedom (see 4.3.7). The support was designed and assembled with materials acquired in hardware stores. The result in Figures 9-11:

Figure 9: Photograph of the support.

Figure 10: Photograph of the model and support assembly with fixed axis.

Figure 11: Photograph of the model and support assembly with springs.

4.2.7 - Mechanism for limiting the angle of roll and for damped oscillations.

To roll the model at pre-arranged angles, a set of longitudinal bars, which limit the angle of inclination was placed on top, with a scale indicating the position of the bars for each degree of inclination between 10 and 25 degrees. Also, a device consisting of a spring connected to a turnbuckle and with a cable to the bottom of the model through a sheave was arranged, in order to dampen the oscillations. This said mechanism caused the spring to elongate when the model was at the end of the roll, both sides. The mechanisms are shown in Figures 12-14.

Figure 12: Scale for the angle limiting mechanism.

Figure 13: Photograph of the angle limiting mechanism with longitudinal sliding bars and scale.

Figure 14: The spring and cable assembly for damped oscillations.

4.3 - EXPERIMENT

4.3.1 - Hypothesis

These experiments are based on the hypothesis that grains under dynamic conditions will exhibit a different cohesive behaviour and therefore the shifting will occur at angles smaller than the AOR, as suggested by Biran (2003): *The accelerations induced by the ship motions can cause load shifting at angles that are smaller than the angle of repose.*

4.3.2 - Assumptions:

- That the rotating motion of the model is equivalent to the ship's rolling at sea, damped, with one out of six degrees of freedom: rotation over one axis, out of rotation and translation over three axes. This excludes longitudinal and vertical accelerations that take place during the complex motion at sea and assumes that it is the lateral accelerations that has a greater impact on sliding of granular material. The subsequent test of the model suspended on springs simulates the motion at sea with six degrees of freedom but undamped.
- That the effect of scale in measuring the AOR is the same as in measuring the angle of shifting, and by extension, that if a small pile has the same or similar AOR as a larger pile, the behaviour of the grain inside the model is the same as in the cargo hold, despite the difference in size. To account for that, multiple measurements of AOR were performed to small and larger piles for the same bag.

4.3.3 - Tolerances

The tolerances considered apply to the following:

- Scale: The model has a scale of 1:40 and the tolerances given by the manufacturer of the parts is 0.13 mm which is equivalent to 5.2 mm on the actual ship scaled. The ship has a beam of 23700 mm therefore the equivalent tolerance is of 0.000219 of its beam which is negligible.
- Rotational speed: The rotational speed was matched with the period of roll for the mathematical model with and without scaling down. In the case of rotating the model without scaling down the period of roll, it does it as a small section of the hold around the center of flotation would do.
- Rotational angle: The rotational angle was measured for every degree of inclination (1°). Objects scaled down of every axis keep angles unchanged therefore at real scale the tolerance continues to be 1°. To measure the angles a protractor scaled for every degree was used. For the purpose of this work, the relevance of the angles is connected to the ability to read angles of inclination on board ships which is in the range of 0.1-0.3° therefore the tolerance can be considered 1/10 or 0.1.
- Size of grain: While the model was scaled down the grain was not. This is because reducing the size of the grain would change its physical properties. This requires a separate analysis (see 2.1.3) and it is the customary procedure in tests done to soil and granular material in centrifuge for geotechnical purposes (Iglesia et al., 2011).

4.3.4 - Grain samples.

Supplied by York Overseas Ltd, obtained from grain terminals in Quebec while loaded on vessels and consisting of 14 bags of wheat CWAD & CWRS as follows. For original tags see APPENDIX 13.

BAG	TYPE	WEIGHT	SEAL No.	TERMINAL	VESSEL
1	1 CWAD	4.0 KG	00004728	G3 CANADA LTD	VEGA ROSE
2	2 CWRS	5.0 KG	00006804	CARGILL LTD	TAI HEALTH
3	2 CWRS	2.5 KG	00008010	LES SILOS PORTCARTIER	DESERT MOON
4	2 CWRS	5.0 KG	00008415	CARGILL LTD	TN DAWN
5	2 CWAD	2.5 KG	00008764	CARGILL LTD	DESERT OSPREY (H1)
6	2 CWRS	2,5 KG	00008763	CARGILL LTD	DESERT OSPREY (H 2,3,4,5)
7	2 CWRS	2.0 KG	00008661	CARGILL LTD	VEGA ROSE
8	2 CWRS	5.0 KG	00008666	CARGILL LTD	VEGA ROSE
9	3 CWAD	2.0 KG	00006914	LES SILOS PORT CARTIER	EQUINOX VOYAGER
10	1 CWRS	2.5 KG	00006934	LES SILOS PORT CARTIER	EQUINOX VOAYGER
11	1 CWAD	4.0 KG	00008775	CARGILL LTD	VEGA ROSE
12	1 CWRS	5.0 KG	00021021	RICHARDSON INT. LTD	JASMINE
13	2 CWRS	3.0 KG	NONE	NONE	NONE
14	2 CWRS	5.0 KG	NONE	NONE	NONE

Table 8: Summary of grain samples information.

4.3.5 - Measurements of the AOR of grain.

In the absence of lab resources for measuring the dimensions (height and radius) of the pile after spilling the grain from a funneling device, the tests were done spilling the contents of the bags at around 20 centimeters over the flat counter, allowing the free piling and sliding of the grain (cone lifting method, Rouse, P. 2014). A Kraft paper was used to line the flat granite counter in order to reduce sliding from the highly polished surface The measurements were done manually with a lever indicator or protractor (Figures 15-18), for which the estimated error in the measurement would be of about 1°. Further details of the proposed methods for measuring the AOR are discussed in this thesis. The mean values obtained are in the range of $25^{\circ} \pm 1^{\circ}$. The results were processed for small and large piles of individual bags and grades, and mean values calculated for each category.

Figure 15: Sample preparation: breaking seal and opening the bag.

Figure 17: Performing the measurements of AOR with level indicator.

Figure 16: Preparing the experiment, pouring the sample grain on the table.

Figure 18: Detail of measurement of AOR taken with the level indicator.

4.3.6 - Measurements of the AOS with fixed axis.

The measurements were taken for all the sample bags, plus the bags of same or similar grade combined. The reason for testing the bags of the same or similar grade combined was to test the AOS with a larger pile as each sample would barely take the volume of the bottom of the hold. The downside to this was that the same combinations of bags were not tested for AOR, but a mean value of their respective AOR calculated.

Т**ф**: 2 sec

The rolling is started at 10 degrees of inclination but after several try outs it was seen that the grain only starts shifting at angles of 17 degrees or higher. The push (heeling force) was done from the port side, allowing the model to oscillate freely to starboard side. While the limiting angle was increased, as the model started to accumulate a permanent list resulting from the shifting of the grain, the oscillation to the opposite side was kept the same. Although the target $T\phi$ was 2 seconds, when the rolling was timed with a chronometer, it was noted to be about 1.40 seconds. The motion of the model was stable and natural. At

this $T\phi$, there was no visible sliding of the grain, probably because of the high frequency of the rolling. Snapshots of different moments of the measurements with fixed axis can be seen below in Figures 17-20.

T**þ**: 8 sec

Before managing to adjust the rolling to this frequency, several practice runs were done and timed with a chronometer. The motion was stable because the rotation axis is fixed, and there was an effort to maintain a synchronic motion during the rolling, with the deceleration that occurs at the end of the rolling, achieved through the damping mechanism of the small spring connected to the model with a cable. These were deemed the best tests because of the motion of the model. Initially tried at 14 and 10 seconds, the motion was deemed too biased, and at 2 sec too fast, without results. The grain was noted to slide at angles between 17 and 19°, in the region of the expected results. The first angle of shifting was computed, together with the permanent list accumulated for progressive increase of the rolling. Snapshots of different moments of the measurements with fixed axis can be seen below in Figures 19-22.

Figure 19: The set up for the tests, with fixed axis.

Figure 20: Rolling the model and measuring the AOS, with fixed axis.

Figure 21: Rolling the model and measuring the AOS, closer view, with fixed axis.

Figure 22: Detail of protractor with reading of the permanent angle of list after the shifting.

4.3.7 - Measurements of the AOS with model suspended on springs.

One of the assumptions (5.2.2) is that the rolling motion of the model is equivalent to that at sea but having only one out of six degrees of freedom. While the sea motion cannot be replicated with the model assembly, an approach to it was sought by suspending the model on springs, based on the below postulate from Rawson and Tupper (1968):

"...It is to be expected that the equation governing the motion of a ship in still water, which is subject to a disturbance in the roll, pitch and heave modes, will be similar to that governing the motion of a mass on a spring.."

The measurements were taken with the combined grains of same or similar grade. Values in excess of 18 degrees of inclination could not be taken, as the model hanging on springs sat lower over the counter.

Τ**φ**.: 2 sec

The model was rolled to one side and left to return to the opposite side. Although there was minimal intervention of the operator, just to give a push to one side to cause the inclination, the model was unstable, the push was noted to cause lateral displacement (in this case a surge fore-aft) and vertical displacement (in the form of heave), deemed excessive for the scale. Because of this, only the angle when the grain first slid was taken. That angle was noted to be similar to the ones measured for the fixed axis setup at 8 seconds, but no conclusive correlation between the two was sought as they were two different setups at different T ϕ . The damping mechanism was noted to be disabled for angles of inclination above 19 or 20° as the bilge strake of the model started hitting the counter. Snapshots of different moments of the measurements with springs can be seen below in Figures 21-24.

T**ф**.: 8 sec

The model was rolled in the same fashion as done with the fixed axis: the frequency was timed, and the motion controlled by hand. This time the disruption of the natural rolling of the vessel, and the bias of the operator was noted to be significative, as well as the side (sway), lateral (surge) and vertical (heave) displacement, with the damping mechanism not being very effective the motion was even more asynchronous. The grain started to slide at about 12° of inclination, which was deemed excessively low when contrasted with real life voyages, where such rolling has been reported but not shifting of cargoes. The reason for the sliding at smaller angles could be related to the disruptive effect of manually handling the model.. Snapshots of different moments of the measurements with springs can be seen below in Figures 23-26.

Figure 23: The set up for the tests, with springs.

Figure 24: Rolling the model and measuring the AOS, with springs.

Figure 25: Rolling the model and measuring the AOS, closer view, with springs.

Figure 26: Detail of protractor with reading of the permanent angle of list after shifting.

4.4 - DATA PROCESSING.

4.4.1 - Comparison of values of AOR with AOS from the results.

The results of the AOS test for the model on fixed axis are consistent with AOS dynamic happening at angles of inclination smaller than AOR and the model's motion was stable. The values for AOS for model on springs at T ϕ = 8 seconds seem low, as if grain was to shift in sea motion condition at 12 degrees inclination, a large number of ships would report shifting during sea passage. As for the values of AOS for the model on springs, they are very similar to those of the model on fixed angles at 8 seconds, but it should not be regarded as a validation of the data, as the two tests were done with different setups and different frequencies. Accordingly, these values will be discarded, and the reading selected will be for fixed axis at T ϕ = 8 second, and the data gathered deemed reliable.

4.4.2 - Correlation between AOR and AOS and conversion constant.

Correlation coefficients are used in statistics to measure how strong a relationship is between two variables. For linear correlation the most common coefficient is Pearson's coefficient R, developed by Pearson (1896) according to Assuero et al. (2006). Given two sets of n number of variables x and y, the calculation of the Pearson's coefficient consists of listing those variables in columns, calculating XY, X^2 , Y^2 , calculating the summation of all the columns and the coefficient R as:

$$R = \frac{n(\Sigma XY) - (\Sigma X)(\Sigma Y)}{\sqrt{[n \Sigma X^2 - (\Sigma X)^2][n \Sigma Y^2 - (\Sigma Y)^2]}}$$
(4.13)

With values between -1 and 1, where -1 indicates a strong negative relationship and 1 a strong positive relationship.

This was done using Excel functions: Our variables X,Y are AOR and AOS. The function "Correl" (for correlation) was used returning a value of 0.5024 for the fixed axis which is not very strong. The causes for such low values can be related to the measuring techniques used and are discussed further in Chapter 7. Non linearity cannot be attributed to the cause, as the pattern of the scattered points is not indicative of any specific function. The graph showing the scatterplot of points around the mean line can be seen in Figure 27.

Fig 27: Pearson correlation graph AOR-AOS.

In order to assess the influence of errors on the correlation and to determine the sensitivity of the correlation to errors, we altered the readings by 0.5 degree either positive or negative, for AOR or AOS or both. That half degree of error is half the tolerance we believe our experiment has, given the methods used and one that is acceptable for the degree of accuracy needed. The new returned value of correlation was 0.8590, which is a strong positive correlation. This can be regarded as an arbitrary and biased procedure and will be discussed further in Chapter 6.

Of the points changed one was still off, which corresponds to the tests done to bags 2,3,4&6. As explained above, for these combined samples the AOR was calculated as the mean of the AOR for each respective bag, and not measured. Therefore, the accuracy of its value could be off by -1/+1. If the same point had been changed by -1/+1, the correlation afterwards would be 0.9273 and if it had been dismissed, the correlation would be 0.9266, which is a strong positive correlation. This illustrates that the calculation of the correlation for the amount of data gathered was very sensitive to errors even in the region of -0.5/+0.5, which is very small. The scatterplot of points after corrected by -0.5/+0.5 can be seen in Figure No 28.

Figure 28: Pearson correlation graph AOR-AOS after changes by -0.5/+0.5.

With the data of AOR / AOS collected from the tests, as used for the calculation of correlation, we also calculated the ratio of AOS to AOR. The mean of all the calculated ratios was taken as a conversion constant. The conversion constant obtained was 0.719. As the validity of this constant could be questioned given the weak correlation between the values measured, the same was calculated for the data adjusted by -0.5/+0.5 as done above and the new correlation was noted to be 0.716.

Therefore, if the AOS was to be calculated with the first constant from AOR = 25°, the value would be $17^{\circ}.975 \approx 18^{\circ}$. If the same value was calculated with the second constant, the result would be $17^{\circ}.9 \approx 18^{\circ}$. Accordingly, the conversion constant between the AOR and AOS can be taken as 0.719 and the calculation can be done as follows:

(4.14)

4.5 - USE OF PROBABILISTIC METHODS FOR PROCESSING THE DATA.

Probabilistic methods are used as a tool for calibrating safety margins against target safety levels and address the probability of an event occurring reflecting the uncertainties in the model chosen and variables considered. The calculations that will follow are based on the contents received during the MTEC module B3: Risk, Reliability and Safety, at the University of Strathclyde and the course notes (Baltrop and Hifi, 2012) and class noted from Dr. Evangelos Boulougouris.

4.5.1 - Readings of angle of roll ϕ

With the collaboration of sea masters and deck officers, readings of ϕ were collected in different types of sea conditions:

VESSEL TYPE			Bulk carrier handysize				
SEA CONDITION			swell, no wind				
DATE	TIME	VALUE	DATE	TIME	VALUE		
15/09/18	6:07:35	8.1	15/09/18	15:40:40	7		
	6:07:45	8		15:40:50	6.5		
	6:07:52	6.3		15:40:59	7		
	6:07:59	6		15:41:08	7		
	6:08:05	7		15:41:18	7		
	6:08:15	5.5		15:41:27	6.5		
	6:08:23	4	-	15:41:36	5		
	6:08:30	5.5		15:41:45	5		
	6:08:38	4		15:41:55	7		
	6:08:47	7		15:42:05	8		
	6:08:56	5		15:42:14	8		
	6:09:04	4		15:42:24	7		
	6:09:13	4		15:42:33	6		
	6:09:23	5.5		15:42:42	6		
	6:09:33	5		15:42:52	5		
	6:09:42	4		15:43:01	6		
	6:09:52	5.5	5.5 5	15:53:10	6		
	6:10:02	5		15:43:19	4		
	6:10:12	5					

Table 9: Readings of angle of roll.

4.5.2 - Calculation of standard deviations of readings of angle of roll ϕ .

Using the formula:

$$\sigma = \sqrt{\frac{1}{\kappa} \sum (X_i - \mu)^2}$$
(4.15)

where K - number of counts, X_i - each measurement, μ - mean.

The calculations yielded the following results :

For 15/09 AM μ = 5.4947 and σ = 1.3049.

For 15/09 AM μ = 6.3333 and σ = 1.0701.

As the readings were taken by different officers, and the standard deviations reflect their accuracy or lack of it in performing the measurements, I will select the highest value of $\sigma = 1.3049$, to account for inaccuracies and errors. In this case we take only the value of standard deviation, as the mean value of ϕ will be calculated from the mean value of AOS using safety factors (see below 4.5.4).

4.5.3 - Calculation of standard deviations of measured AOR - AOS.

Following the same procedure as above, the standard deviations of the measured values of AOR and AOS were calculated, separating the measurement by grades (CWAD and CWRS). The following results were obtained:

For CWAD AOR μ = 25.344 and σ = 1.127, AOS $\,\mu$ = 18.2 and σ = 0.837

For CWRS AOR μ = 24.330 and σ = 0.655, AOS μ = 17.5 and σ = 0.707

Here also in order to account for inaccuracies and errors, the highest value was selected: $\sigma = 1.127$. In this case we take only the value of standard deviation, as the mean value of AOR is given by shippers and the mean value of AOS is calculated from the angle of repose as per formula (4.9).

4.5.4 - Safety margin between ϕ and AOS - AOR.

In structural engineering, safety factors that account for uncertainties are calculated, without being excessive while yielding low probabilities of failure. Normally those safety factors are associated to loads and resistance or applied load versus design load, where the former exceeding the latter would result in structural failure. In this particular problem of transversal stability, an homology with the above concept can be established, where ϕ and AOS are the two variables to compare, and the former exceeding the latter would result in system failure, in this case, shifting of the grain.

As the angle of shifting (AOS) is a parameter not known to grain producers and terminals (it was the main objective of this work to obtain it and it was measured with the experiments), a factor or constant will be used to convert AOR into AOS having established the correlation between the two and the mean ratio or conversion constant as per formula (4.9). This constant C is valid only for wheat. As the correlation was weak, resulting from possible errors in the measurements during the tests, such errors can be offset by choosing the highest values of Standard deviations for measuring AOR and AOS, and by increasing the safety

factor. When choosing a safety factor, a target value of probability of failure should be considered (Tsimopoulou et al., 2011). Goal based Safety Level Approach could be used as reference. In this particular case, where the risks are associated with cargo damage, structural damage, commercial losses, but most of all, personal injury or loss of life, even though it can be quantified and compared to the costs of not taking the cargo or waiting outside for better weather conditions, we will select a target probability of failure.

Example:

AOR for wheat, according to shippers = 25°

AOS = AOR x C = 25 x 0.719 = 17.975 = 18

The safety factor:

$$Y = \frac{AOS}{\phi}$$
(4.16)

For Y = 1.5, then

$$\phi = \frac{AOS}{Y} = \frac{18}{1.5} = 12^{\circ}$$

We have set the safety factor at 1.5 with a target probability of failure P<0.0006 (see discussion in Chapter 6).

4.5.5 - Montecarlo simulation for random ϕ and AOR, and probabilities of shifting.

The safety factor chosen may or may not be sufficient to warrant a low or the targeted probability of failure: shifting. If the probability of shifting remains above the targeted limits, then the safety factor has to be increased. If the probability is zero or too low and the safety factor deemed excessive, it can be reduced.

A feasible way to check the reliability of the safety factor chosen is by running a crude Montecarlo simulation using the two mean values of the variables to compare (AOS = 18 and ϕ = 12), and the highest values of standard deviation obtained from the readings (for ϕ and for AOR-AOS). This will generate or simulate a number of random variables, and compare for failure, where the probabilities of failing is the ratio of failures to the number of simulations.

Values

Mean value of the $\phi~\mu_{A_{roll}}$ = 12°, standard deviation of the $\phi~\sigma_{A_{roll}}$ = 1.3049

Mean value of the AOS $\mu_{A_{shifting}}$ = 18°, standard deviation of the AOS $\sigma_{A_{shifting}}$ = 1.1270

The Montecarlo simulation returned the following values after 1,000,000 simulations:

Mean of 1,000,000 angles of roll ϕ , Aormean: 12.0004

Mean of 1,000,000 angles of shifting, AOSmean: 17.9995.

Standard deviation of the mean of 1,000,000 angles of roll ϕ , STDAor: 1.30482.

Standard deviation of the mean of 1,000,000 angles of shifting, STDAOS: 1.12544.

The number of failures in 1,000,000 simulations: 234.

The probabilities of failure: 0.00023 .

MONTEC	ARLO SI	ULATION											
STUDENT: F	RANCISCO	JUARRERO											
Data:											from simulation		
angle of roll		Mean value Aorn	nean =	12	Stardard d	eviation ST	Aor =	1.3049		mean angle	of roll =	12.00043	
angle of shift	ft	Mean value AOSr	mean =	18	Standard d	eviation ST	DAOS =	1.127		mean angle	of shifting =	17.99949	
										stdeviaaver	ageangleroll =	1.304824	
Formula					Number of	simulation	s =	1000000		stdeviaaver	ageangle of shift =	1.12544	
NORM.IN\	/(RAND()	mean, standard	_dev)										
										βreliability	/ factor	3.481488	
		Angle of roll		AOS	Fail: if Yes	1) if No (0)			No of failures	Prob of fail	ure		
1	1	10.24324	1	17.1899	0				234	0.000234			
1	2	12.51621	2	19.05786	0								
1	3	12.73898	3	19.0658	0								
1	4	11.85918	4	18.07369	0								
1	5	11.749	5	16.34227	0								
1	6	13.23904	6	18.13108	0								
1	7	12.10759	7	18.2351	0								
1	8	14.99115	8	17.60358	0								
1	9	12.92364	9	16.72714	0								
1	10	13.38673	10	16.07244	0								
1	11	12.2804	11	16.54868	0								
1	12	13.21822	12	17.098	0								
1	13	11.89794	13	17.89716	0								
1	14	11.23134	14	19.42059	0								
1	15	13.088	15	19.51897	0								
1	16	12.60632	16	18.06803	0								
1	17	12.00367	17	18.01313	0								
1	18	11.09785	18	16.687	0								
1	19	12.32257	19	18.91732	0								
1	20	12.24817	20	17.32982	0								
1	21	12.24994	21	16.48856	0								

Figure 29: Montecarlo simulation calculation in Excel.

As the resulting probability of failure is less than 0.0006 (0.00023), the calculations can be repeated to reach the target probability chosen. It should be noted though that as the computer is generating random numbers that match the criteria of mean value and standard deviation, for both variables, the results vary slightly. Moreover, when tried for Y = 1.3 the number of failures was 1861 for P = 0.00186, and for Y = 1.4 the number of failures was 10195 for P = 0.0102, therefore, the value of safety factor chosen 1.5 is finally selected.

5. RESULTS

Following are the results of the experiment and processing of data:

BAG						AOR					
		S	MALL PIL	E			L	ARGE PILI	E		MEAN OF
	1	2	3	4	MEAN	1	2	3	4	MEAN	MEAN
1	26.5	26.5	26.5	26.5	26.500	27.5	27.0	28.5	28.0	27.750	27.125
2	24.0	24.5	23.5	23.5	23.875	25.0	25.0	24.5	23.5	24.500	24.188
3	22.5	23.5	25.5	23.5	23.750	25.0	24.0	25.0	24.0	24.500	24.125
4	24.0	23.5	24.0	23.5	23.750	24.0	24.5	24.5	24.5	24.375	24.063
5	24.0	24.5	25.0	25.5	24.750	25.0	23.5	24.5	25.5	24.625	24.688
6	24.5	25.0	23.5	25.5	24.625	23.5	22.5	23.5	22.5	23.000	23.813
7	24.5	23.0	23.0	23.5	23.500	23.5	25.0	25.0	24.0	24.375	23.938
8	23.5	23.5	22.5	23.5	23.250	22.0	25.5	22.5	23.5	23.375	23.313
9	25.0	23.5	23.5	25.5	24.375	24.5	26.5	26.5	25.0	25.625	25.000
10	24.5	25.0	25.0	25.5	25.000	25.5	23.5	23.5	24.5	24.250	24.625
11	24.0	24.5	23.5	24.5	24.125	26.5	25.0	25.0	25.0	25.375	24.750
12	25.0	25.0	25.0	24.5	24.875	25.5	23.5	26.5	24.5	25.000	24.938
13	25.5	25.5	24.5	26.5	25.500	25.5	24.5	26.5	26.5	25.750	25.625
14	25.5	25.5	25.5	25.0	25.375	26.0	26.0	25.5	26.0	25.875	25.625

- The measurements of the AOR yielded the following results:

Table 10: Measured angle of repose AOR of samples and average values.

- The summary of the above measurements by grades:

GRADE		AOR	
	SMALL PILE	LARGE PILE	MEAN OF MEAN
	MEAN.	MEAN	
1 CWAD	25.313	26.563	25.938
2 CWAD	24.750	24.625	24.688
3 CWAD	24.375	25.625	25.000
1 CWRS	24.938	24.625	24.782
2 CWRS	24.203	24.469	24.336

Table 11: Summary of the AOR measured.

No	Bag No	Grade	Angle	Permanent angle of list after the roll								
tests			of Shifting	17	18	19	20	21	22	23	24	25
1	1	1 CWAD		-	-	-	-	-	-	-	-	-
2	5	2 CWAD		-	-	-	-	-	-	-	-	-
3	1+5	CWAD		-	-	-	-	-	-	-	-	-
4	2	2 CWRS		-	-	-	-	-	-	-	-	-
5	3	2 CWRS		-	-	-	-	-	-	-	-	-
6	4	2 CWRS		-	-	-	-	-	-	-	-	-
7	6	2 CWRS		-	-	-	-	-	-	-	-	-
8	2+3+4+6	CWRS		-	-	-	-	-	-	-	-	-
9	7	2 CWRS		-	-	-	-	-	-	-	-	-
10	8	2 CWRS		-	-	-	-	-	-	-	-	-
11	9	3 CWAD		-	-	-	-	-	-	-	-	-
12	10	1 CWRS		-	-	-	-	-	-	-	-	-
13	11	1 CWAD		-	-	-	-	-	-	-	-	-
14	12	1 CWRS		-	-	-	-	-	-	-	-	-
15	13	2 CWRS		-	-	-	-	-	-	-	-	-

- The measurements of AOS with fixed axis, at To = 2 seconds:

Table 12: Measured angle of shifting AOS of samples with fixed axis assembly (T ϕ 2 sec).

- The measurements of AOS with fixed axis, at To = 8 seconds:

			·									
No	Bag No	Grade	Angle		Р	erman	ent an	gle of li	ist afte	r the ro	oll	
tests			of Shifting	17	18	19	20	21	22	23	24	25
1	1	1 CWAD	19	-	-	1.0	3.0	4.0	6.0	8.0	9.0	9.5
2	5	2 CWAD	18	-	1.5	2.5	4.0	5.0	6.5	8.0	8.5	9.0
3	1+5	CWAD	18	-	1.5	3.0	4.5	5.5	6.5	8.5	9.5	10.0
4	2	2 CWRS	17	1.5	2.0	4.0	5.0	5.5	7.0	8.0	8.5	10.0
5	3	2 CWRS	17	1.5	2.0	2.0	4.5	5.0	6.0	7.5	8.0	8.5
6	4	2 CWRS	17	1.0	2.5	2.5	4.5	6.0	6.5	8.5	10.0	10.0
7	6	2 CWRS	17	1.5	2,5	4.0	4.5	6.5	7.5	7.5	8.3	8.5
8	2+3+4+6	CWRS	19	-	-	1.5	3.0	4.0	5.0	6.5	7.0	8.0
9	7	2 CWRS	18		2.0	2.5	3.5	5.0	6.0	6.5	7.5	8.0
10	8	2 CWRS	17	1.5	3.5	4.5	5.5	6.5	8.0	8.5	9.5	10.5
11	9	3 CWAD	19	-	-	2.0	3.0	3.5	5.0	5.5	6.0	8.5
12	10	1 CWRS	18		1.0	2.5	3.5	4.5	6.0	6.5	6.5	8.0
13	11	1 CWAD	17	2.5	3.0	4.5	6.0	7.5	8.0	9.0	9.5	10.0
14	12	1 CWRS	17	1.5	2.5	3.0	4.0	4.5	5.0	6.0	8.0	8.5
15	13	2 CWRS	18	-	1.5	2.5	3.5	4.5	5.0	5.5	7.0	8.0
16	14	2 CWRS	-	-	-	-	-	-	-	-	-	-

Table 13: Measured angle of shifting AOS of samples with fixed axis assembly (T ϕ 2 sec).

No	Bag No	Grade	Angle	Angle Permanent angle of list after the roll								
tests			of Shifting	15	16	17	18	19	20	21	22	23
1	1+5	CWAD	18	-	-	-	2.5					
2	2+3+4+6	2 CWRS	19	-	-	-	-	4.0				
3	8	2 CWRS	19	-	-	-	-	4.5				
4	11	1 CWAD	18	-	-	-	3.5					
5	12	1 CWRS	19	-	-	-	-	2.5				
6	14	2 CWRS	19	-	-	-	-	2.0				

- The measurements of AOS with springs, at To = 2 seconds:

Table 14: Measured angle of shifting AOS of samples with model on springs (T ϕ 2 sec).

- The measurements of AOS with springs, at To = 8 seconds:

No	Bag No	Grade	Angle		Р	erman	ent an	gle of li	ist afte	r the ro	oll	
tests			of Shifting	12	13	14	15	16	17	18	19	20
1	1+5	CWAD	12	1.0	4.0	6.5	7.5	9.0	10.0	11.5		
2	2+3+4+6	2 CWRS	13	0.0	1.5	2.5	4.5	6.5	9.5	11.0		
3	8	2 CWRS	12	2.5	5.0	7.0	9.0	10.0	12.0	13.5		
4	11	1 CWAD	12	3.0	5.0	6.0	7.5	8.5	10.5	11.5		
5	12	1 CWRS	12	1.5	3.5	5.5	6.5	8.0	10.0	10.5		
6	14	2 CWRS	13	0.0	1.5	3.5	4.5	6.0	9.0	10.0		

Table 15: Measured angle of shifting AOS of samples with model on springs (T ϕ 8 sec).

- The results of the tests for AOR and AOS for the different grades can be compared as follows:

No	BAG - GRADE	AOR	AOS FIXED	AOS FIXED	AOS SPRING	AOS SPRING
Test		(mean of	(8 sec)	(2 sec)	(8 sec)	(2 sec)
		mean)				
1	1 - 1CWAD	27.125	19	-		
2	5 - 2CWAD	24.188	18	-		
3	1&5 - CWAD	25.656	18	-	12	18
4	2 - 2CWRS	24.125	17	-		
5	3 - 2CWRS	24.063	17	-		
6	4 - 2CWRS	24.688	17	-		
7	6 - 2CWRS	23.813	17	-		
8	2,3,4&6 - 2CWRS	24.172	19	-	13	19
9	7 - 2 CWRS	23.938	18	-		
10	8 - 2 CWRS	23.313	17	-	12	19
11	9 - 3 CWAD	25.000	19	-		
12	10 - 1 CWRS	24.625	18	-		
13	11 - 1 CWAD	24.750	17	-	12	18
14	12 - 1 CWRS	24.938	17	-	12	19
15	13 - 2 CWRS	25.625	18	-		
16	14 - 2 CWRS	25.625	-	-	12	19

Table 16 : Comparison of values of AOR and AOS from the experiments.

		AOR	AOS FIXED	
No Test	BAG - GRADE	(mean of mean)	(8 sec)	KATIO
1	1 - 1CWAD	27.125	19	0.700
2	5 - 2CWAD	24.188	18	0.744
3	1&5 - CWAD	25.656	18	0.702
4	2 - 2CWRS	24.125	17	0.705
5	3 - 2CWRS	24.063	17	0.706
6	4 - 2CWRS	24.688	17	0.689
7	6 - 2CWRS	23.813	17	0.714
8	2,3,4&6 - 2CWRS	24.172	19	0.786
9	7 - 2 CWRS	23.938	18	0.752
10	8 - 2 CWRS	23.313	17	0.729
11	9 - 3 CWAD	25.000	19	0.760
12	10 - 1 CWRS	24.625	18	0.731
13	11 - 1 CWAD	24.750	17	0.687
14	12 - 1 CWRS	24.938	17	0.682
15	13 - 2 CWRS	25.625	18	0.702
CONSTANT F				0.719
CORRELATIO	N			0.5024

- The results of the calculations for correlation and ratio, with the data from AOR and AOS:

Table 17: Data and results of AOR to AOS ratio and correlation.

		AOR	AOS FIXED		
No Test	BAG - GRADE	(mean of mean)	(8 sec)	ADJUSTMENT	RATIO
1	1 - 1CWAD	27.125	19	-	0.700
2	5 - 2CWAD	24.188	17.5	0, -0.5	0.744
3	1&5 - CWAD	25.656	18	-	0.702
4	2 - 2CWRS	24.125	17	-	0.705
5	3 - 2CWRS	24.063	17	-	0.706
6	4 - 2CWRS	24.688	17.5	0, + 0.5	0.689
7	6 - 2CWRS	23.813	17	-	0.714
8	2,3,4&6 - 2CWRS	24.672	18.5	+0.5, -0.5	0.786
9	7 - 2 CWRS	24.438	17.5	+0.5, -0.5	0.752
10	8 - 2 CWRS	23.313	17	-	0.729
11	9 - 3 CWAD	25.500	18.5	+0.5, -0.5	0.760
12	10 - 1 CWRS	24.625	18		0.731
13	11 - 1 CWAD	24.750	17.5	0, +0.5	0.687
14	12 - 1 CWRS	24.438	17.5	-0.5, +0.5	0.682
15	13 - 2 CWRS	25.625	18		0.702
			CONSTANT F	OR CONVERSION	0.716
	0.8590				

- The results of the calculations for correlation and ratio, with the data from AOR and AOS, with adjustments:

Table 18: Data and results of AOR to AOS ratio and correlation , with adjustments.

- The values of mean and standard deviation for the readings of angle of roll were calculated as follows:

VESSEL TYPE	DATE	TIME	SEA CONDITION	ROLL	
		UTC		MEAN VALUE μ	STD DEV σ
Bulk carrier handysize	15/9/18	06:07	swell, no wind	5.4947	1.3049
Bulk carrier handysize	15/9/18	15:40	swell, no wind	6.3333	1.0701

Table 19: Calculation of mean values and standard deviations of angle of roll.

- The values of mean and standard deviation for the measurements of AOR and AOS were calculated as follows:

No	BAG - GRADE	AOR	AOR	AOR	AOS	AOS	AOS
Test		(mean)	variance	STD DEV	FIXED	variance	STD DEV
					(8 sec)		
1	1 - 1CWAD	27.125	3.173		19.000	0.640	
2	5 - 2CWAD	24.188	1.336		18.000	0.040	
3	1&5 - CWAD	25.656	0.097		18.000	0.040	
4	9 - 3 CWAD	25.000	0.118		19.000	0.640	
5	11 - 1 CWAD	24.750	0.353		17.000	1.440	
Mean (CWAD	25.344	1.269	1.127	18.200	0.700	0.837
6	2 - 2CWRS	24.125	0.042		17.000	0.250	
7	3 - 2CWRS	24.063	0.071		17.000	0.250	
8	4 - 2CWRS	24.688	0.128		17.000	0.250	
9	6 - 2CWRS	23.813	0.267		17.000	0.250	
10	2,3,4&6 - 2CWRS	24.172	0.025		19.000	2.250	
11	7 - 2 CWRS	23.938	0.154		18.000	0.250	
12	8 - 2 CWRS	23.313	1.034		17.000	0.250	
13	10 - 1 CWRS	24.625	0.087		18.000	0.250	
14	12 - 1 CWRS	24.938	0.370		17.000	0.250	
15	13 - 2 CWRS	25.625	1.677		18.000	0.250	
Mean (CWRS	24.330	0.428	0.655	17.500	0.500	0.707

Table 20: Calculation of mean values and standard deviations of AOR and AOS.

- The number of failures and probability of failure returned after generating 100,000 random variables or the selected parameters ϕ and AOS:

Number of failures: 23

Probability of failure: 0.00023

6. DISCUSSION

The experiment was performed for a number of samples. Before doing the tests and measuring the angle of shifting, each sample was tested for the angle of repose. Such test was performed on a flat table, allowing a vertical flow of grain from the bags to pile up and form a slope until the sliding started to occur. The measurements were done with a lever indicator measuring over the base of the pile every 90 degrees, similar to the cone lifting method described by Rouse, P. (2014). Other more sophisticated methods described by Rouse and others (Al-Hashemi and Al-Amoudi 2017) entail measuring the base of the heap and height and calculating the slope with trigonometric functions or using tilting boxes. The method used can also be categorized as Piling Angle of Repose, as opposed to the Sliding Angle of Repose (Eleleji and Zhou, 2008), which is an approach to determining the dynamic angle of repose, using tilting or movable tables. Al-Hashemi and Al-Amoudi also refer to the dynamic angle of repose being between 3 to 10° less than the static angle of repose using the revolving cylinder method, but again, no reference was found of doing the same on board rolling vessels or models. The values measured in smaller and larger piles show that the changes in the surface area available to the grain caused a slight variation of the AOR but in both directions (increase or decrease), therefore, not conclusive (not systematic). We have considered that the observed differences may be errors of measurements (casual errors) and not cause-effect related. The average values of AOR measured are similar to those customarily presented to the industry by grain shippers.

The experiment is an approximation or simulation of the conditions the grain is exposed to during rolling at sea, i.e. dynamic conditions. Rolling motion is a complex phenomenon. Even in a simplified mathematical model, it depends on many factors, such as transverse ship's inertia, moment of added mass of water dragged by the hull, linear roll damping coefficient, righting moment or stiffness, external heeling moment and frequency of waves (Wawrzyński and Krata, 2016). In terms of frequency of the roll, it is understood that the rolling periods calculated are representative of this vessel for this cargo in specific loading conditions. There can be as many values of period of roll as there are vessels in different loading conditions, and it is therefore impossible to analyze each one of them. The natural period of roll, for the mathematical model ship rounded up were 12 and 14 seconds for the departure and arrival condition. These two values were recalculated scaling down the dimensional elements of the expression, i.e. only applying the scale to the dimensional variables with mean result of 2 seconds. The calculations are in appendix 6. The right scaling down of the period was done considering the geometrical and kinematical similarity requirements, as expressed in Newton's law of similarity, considering only the forces and accelerations that are relevant to the model (gravity and acceleration) and none that would apply to hydrodynamic test models (velocity of fluids, viscosity)(Bertram 2011). All calculations can be seen in 4.1.3.

The tests were done using the model suspended on fixed axis and on springs. The model was initially tried and rolled, aiming at various frequencies approximately: 14,10,8 and 2. The rolling at period of roll of 2 seconds was done by pushing the model from one side, then allowing the return roll with its own restoring forces, with the spring acting as a damper of the oscillations and the angle limiting bars setting the maximum angle of roll (it was in reality about 1.40 sec this rolling). In the model set up with fixed axis this appeared to be natural and stable, the rolling motion well simulated although it lacked 5 out of 6 degrees of freedom. In the model with the spring set up we noted vertical (surge) and lateral (sway) displacements to be too large for the scale. A possible reason for this was the excessive elasticity of the springs.

The rolling at 14 and 10 seconds was firstly done with the operator controlling the frequency of oscillations by hand, after timing the cycle with a chronometer. This disrupted the synchronism and the symmetry of the motion, and the operator bias was deemed excessive. The rolling was done at 8 seconds and the results were similar to that at 14 and 10, therefore, the tests were not pursued at 10 or 14 seconds and instead done at 8 seconds. In the set up with springs, the handling of the rolling introduced even more longitudinal and lateral displacements. Accordingly, in terms of motion and simulation of oscillations, the best performance was done at 2 seconds (1.4 seconds) for the model on fixed axis, then the model on spring at 2 seconds (1.4 seconds) and model on fixed axis at 8 seconds. The period of roll of 14 seconds (2 seconds scaled down) can be categorized as "comfortable" according to the Kempf factor as mentioned by Norby (1962) according to Biran (2003) which is calculated and assessed as follows:

$$Kf = T \sqrt{\frac{g}{B}}$$
(6.5)

Where

Kf < 8 = vessel stiff

Kf > 8 <14 = comfortable roll

Kf >14 = vessel tender

for T = 2 seconds, Kf = 9.00 - comfortable

for T = 8 seconds, Kf = 5.14 - stiff

8 seconds is not the true period of roll for the model or the vessel; 2 and 14 seconds are. However, as the former did not yield results in the fixed axis model and the latter made the motion too disruptive and biased, the tests at 8 seconds on the fixed axis model are chosen as the reliable results, prioritizing the stability of the motion over the period of roll for a single condition, keeping also in mind the tests were done to find a general methodology for different ships in different loading conditions with different period of roll.

The model on springs yielded shifting angles at period of roll of about 2 seconds (1.40) in the region of 18-19 degrees of inclination. At period of roll of 8 seconds, the grain sliding occurred at angles of inclination in the region of 12 degrees. The results at 8 seconds are not reliable, firstly because in the experience of the author, many voyages with grain are performed in winter season where such angles of rolling are recorded, and if grain were to shift, a substantial amount of shifting reports would have been received, secondly because at 8 seconds the motion of the model with the intervention of the operator was exceedingly unstable, as mentioned above. As for the model on fixed axis, it did not show any sliding at period of roll of 2 seconds. It is possible that the frequency of the sliding of the grain is such compared to that of the rolling, that when the sliding starts to occur, the vessel is already in the return roll, thus nullifying the event, in a similar fashion as free surface in roll damping tanks occur. At period of roll of 8 seconds the grain sliding occurred at angles of about 18 degrees and these results were deemed reliable and taken for calculations of the methodology.

For each of the mentioned period of roll, the model was rolled at increasing angles until there was visual indication of granular slide and there was some permanent list measured with the protractor to one side.

The limiting bar set for the angle of roll when the first sliding was noted to occur, was taken as the angle of shifting. One common result was that the smaller the period of roll, which is indicative of greater stability (GM), the greater the angle at which the shifting occurs. While greater GM and shorter periods of roll for which the ship might be termed as "stiff" could be undesirable and even counterproductive for certain cargoes such as steel due to tangential forces (Biran, 2003), for grain cargoes a greater GM could prevent the shifting of the grain at lesser angles. During the experiments we tried to establish a threshold of period of roll where the grain stops shifting at some angles. It was difficult to establish as the frequency of the roll is adjusted manually but it was noted there was no sliding at 15°, at 18° roll the threshold T \approx 3 sec. ($f \approx 0.333\overline{3}$ Hz) at 21° roll the threshold T \approx 2.1 sec. ($f \approx 0.4762$ Hz) and at 25° the threshold T \approx 1.5 sec. (($f \approx 0.666\overline{6}$ Hz). The measuring was done by starting at high frequencies and decreasing them until sliding was noted to occur, measuring the corresponding period of roll with a chronometer.

A strong correlation between the measured AOR and AOS could not be established, however, after further verification it was found that the correlation calculation was highly sensitive to errors in measurements. As an exploratory exercise, the angles of repose and shifting measured that were more scattered in the scatterplot were altered by $\pm 0.5^{\circ}$ and following this, the correlation changed to almost 0.9. Accordingly, it would be fair to say that there is a correlation and it is positive and linear; and the low correlation coefficient was due to the lack of precision of the methods and instruments for measuring the angle of repose and the angle of shifting: limited to visual indication of sliding and shifting and a protractor. This of course can be deemed arbitrary and biased, and there is a mathematical way of correcting the low values of correlation due to measurement errors, called Attenuation, as described by Spearman C. (1094) which will not be done here as it is not within the scope of this work.

The experiments would have benefited also from a motor coupled with a mechanism for adjusting the speed for better simulating a controlled rolling motion at exact periods of roll. The accuracy in establishing when the grain first slides enough to accumulate a list, depended on the accuracy and the position of the protractor (which could not be placed in the centerline thus adding weight to one side) and also on the attention and perception of the observer. These are limitations given by the lack of access to lab resources or sophisticated techniques and instruments, however, such limitations do not impair the use of the results or affect their accuracy beyond the tolerances established initially, and the possible errors introduced are covered by the safety factor chosen. We did not find reference to methods for measuring shifting of grain in cargo hold models, or even references to previous tests of this kind. However, the methods presented in this report could be improved based on methods used in geotechnical engineering. Prof. François Duhaime and Mr. Pouyan Pirnia from the Construction engineering department at École de technologie supérieure, in Montreal, suggested for instance to measure the static AOR based on methods proposed by lleleji and Zhou (2007), to use the discrete element method to model grain displacements (Pirnia et al. 2016), and to use the digital image correlation technique to measure grain displacements behind the transparent surface of the model (Dumberry et al. 2018).

Although Spandonidis and Sryrou (2015) did model the shifting of granular materials in beam seas with computers, there is lack of information on how the shifting of grain in cargo holds occurs physically. These experiments provided an opportunity also for observing the process of grain sliding in an oscillating enclosed compartment and for attempting to describe the possible scenario of grain shifting and listing of a rolling vessel: At certain values of inclination during the rolling, the granular cohesive forces are exceeded, and the grain commences to slide. As indicated by the physics of grain cohesion (5.2.3.1), there are frictional

forces opposing to the weight causing sliding. In this case there are frictional forces between grains or layers of grain and frictional forces between the pile and the surface of the compartment (hold tank top and hopper slopes). During the experiment, we noticed the laminar sliding occurring between layers of grain, with the upper layers shifting in greater proportion than the subsequent layers, in a staggered fashion, and the pile sliding with respect to the surface of the model interior (Figure 26). Both the grains and model surface have different frictional coefficient, and that of the model (varnished wood) is certainly less than that of the grain, but also the fact that the model is varnished results in greater sliding of the pile with respect to the surface of the model, compared to that of grain in the surface of a real cargo hold. To better understand the phenomenon observed, the work done by Sharan and Lee (1969) is of great relevance. They measured the friction coefficient of wheat grain on grain (internal friction) and wheat on steel, for a pile of wheat with certain depth in a steel bin. The results of their experiment demonstrate the increase of the internal friction with the increase of the depth of the grain, and the internal friction coefficient being greater than that of grain on steel. The former explains the laminar sliding and the latter explains the small piles sliding faster than large piles.

Figure 30 - Laminar sliding of the grain

Let's call θ - angle of list and α - angle of laminar sliding, then it was observed that $\theta > \alpha$

The depth of the pile has an effect not only on the friction coefficient and hence the cohesion forces, but also leads to compression. It is well known by grain terminal operators and superintendents that when the grain is loaded, the stowage factor (the ratio of total volume of a cargo hold to weight of same hold fully loaded) is smaller than the test weight (ratio of total volume of a test box to weight of the same box filled) due to compression.

As the grain shifts, a new slope will form requiring more inclination to cause sliding and the sliding will stop. This new slope will cause a transverse shifting of the center of gravity of the pile. As the center of gravity of that (and any other slack hold where the grain slid) shifted, the center of gravity of the whole vessel has shifted too and it is off the vertical with the center of buoyancy, the two opposing forces - gravity and buoyancy - at certain distance creating a moment (heeling moment). As the vessel starts listing, the centre of buoyancy shifts towards the side the hull is sinking until it is in the same vertical with the center of gravity, the new position of equilibrium, where the heeling arm and moment are null and the vessel rests in that position of permanent list. The vessel now rolls around the new position of equilibrium, meaning that the new rolling will be increased due to the permanent list. This phenomenon can be seen in videos of the towing of the Modern Express, which listed heavily in the North Atlantic on January 26th 2016: the ship rolled around the new position of equilibrium at 40 degrees to the port side (gCaptain, 2016). The increased roll will be able to exceed the cohesive forces of the pile, causing it to shift, until the newly formed slope stops the shifting again. There will be a new increased permanent list, and the process is repeated with the vessel rolling around the new position of equilibrium until the grain surface reaches the boundaries of the cargo hold and cannot shift anymore. Accordingly, it can be said it is a progressive effect. With respect to the limit of shifting, the IGC (1991) establishes that limit at 25° of slope, and ship's curves and tables for heeling moments are calculated for that number, that is, the permanent angle of heel and the residual stability between the curve of righting arm (GZ) and the curve of heeling arm (λ) after the shifting, are calculated based on the surface of the grain shifting 25° for partially filled holds (15° for filled holds).

In order to test the above, the model was set at max 18° both sides with the limiting angle mechanism, then pushed to roll to one side to 18° and let return freely, which happened at 16°.5. Then the rolling slowed down to let slide happening and the return controlled to 16.5 with 1° permanent list. The limiting bars were then set for max 20° one side and 19°, and the return freely although never reached that point. Then, repeated controlling the speed. With the accumulated shift of grain, the new list was 3°. Same repeated at 23° one side, return to 19° and both rolling and return controlled to allow for sliding. The new list was 8.5°. Finally, the test was done at 25° one side, return 19° (at this point with the free rolling the return roll didn't even reach 10°) and the permanent list was 11°. The last test was performed mixing many samples of different grades to fill up the model. When the test was run, the shifting was noted to occur at angle of inclination of 23°. There is a number of reasons for this: the storage condition of these samples (the samples had been stored in a temperature controlled room whereas these ones after the use had been stored in a garage) and the depth of the pile increasing the friction over the surface of the model and the internal friction of grain on grain. While this test was not computed for results given that the sample was of mixed grades and probably accumulated humidity, it sheds some light on the increase of the angle of shifting for larger piles, and this compounded with the findings of Sharan and Lee about increase of friction with the depth of the pile and the internal friction of grain on grain prevailing over friction with the steel tank top and sloping plates of ship holds, we can conclude that holds mostly empty will shift earlier than fuller holds.

One of the objectives of this work was to research on a possible methodology for a safe procedure of deballasting before entering ports (or ballasting after leaving), when the grain stability criteria and the draft cannot be simultaneously met. The said methodology starts with the known data: angle of repose and the required data: angle of roll. The angle of repose is given by terminals when loading the grain. Enquiries were made with local grain terminal managers (G3 in Quebec, Les Silos de Port Cartier, Cargill in Baie Comeau) and they referred to having such data as statistical value. During the experiment a number of

samples were tested for both angle of repose and angle of shifting, thus allowing us to find their ratio and with the mean ratio establishing a conversion constant. Such factor for the grain used (wheat) was found to be 0.719. Applying this factor to the AOR given by shippers / terminals, the expected or estimated angle of shifting is obtained. Then the maximum permissible ϕ can be calculated, so as to prevent shifting. The minimum requirement or what could be called Limit State Function would be:

$$g(x) = AOS - \phi \text{ where failure F} = \{g(x) \le 0\}$$
(6.6)

where failure means shifting of the grain.

Any condition where AOS - ϕ > 0 satisfies the criteria that avoid the shifting of the grain, however, such condition is not enough to be deemed safe. The values involved in the calculation are subject to errors: The value of AOR given by shippers is statistical and one value will fit different parcels with different grains, even if of the same grade, exposed to different environment, thus having different size, humidity, etc. The value of AOS and the conversion factor was obtained from tests for a single value of period of roll, with specific grades of wheat, and with instruments of limited accuracy. To account for possible errors in the readings, we introduced a safety factor: one that reduces the probability of failure below minimum acceptable limits. We are applying basic principles of probabilities, as presented to us in the MTEC module B3, Risk, Reliability and Safety by the University of Strathclyde (course notes) used for structural design.

$$AOS = Y \times \phi \tag{6.7}$$

To check the degree of reliability with this safety factor, the Montecarlo simulation was run, after the mean values for AOS (from AOR) and standard deviations σ of the various readings of AOS were calculated, selecting the highest of all values of σ for different grades. As for the mean value of the angle of rolling ϕ , it was calculated from the AOS with the safety factor, and the standard deviations from a number of readings done by deck officers on board ships and sent to us. The simulation was done in Excel, using the function NORM.INV, for a 100,000 and 1,000,000 simulations. Ideally, it would have been done in the professional version of MathCad. The simulation was tried for various safety factors Y = 1.3, 1.4 and 1.5 against a target probability of failure.

With respect to the target probability of failure, the information found mostly relates to structural failure. Duckett (2004) refers to an annual probability of failure for bridges (collapse and impacted by ships) in the range of 10^{-4} yearly target, as per ISO/ DIS 10252 (bases for design of structures, accidental actions) norms. This results in 1% probability of failure for a 100 years life of the structure.

In the same paper, he presents a formula for calculating a rational target probability as follows:

$$P(f) = \frac{10^{-4}}{N_r} K_s N_d$$
(6.8)

Where N_r is the number of people at risk (considered 20), N_d the number of years of service (considered 25) and K_s is 5 for towers and offshore structures.

the calculated target probability is:

$$P(f) = \frac{10^{-4}}{20} \times 5 \times 25 = 0.000625$$

The safety factor Y = 1.5 (ϕ = 12°) yielded a probability of failure of 0.00023 which is the one that meets the target set. At Y = 1.4 ((ϕ = 13°) it yielded a probability of failure of 0.00186 and at Y = 1.3 ((ϕ = 14°) the probability of failure was 0.0102. While the 100,000 simulations gave variable results of failures ranging from 7 to 30 (P = 0.00007 to 0.00030), at 1,000,000 simulations there was a better convergence and the number of failures were all in the range of 200. The reliability factor β was calculated as 3.55.

The said methodology and possible safety procedures, subject to further research and studies, could be summarized as follows (as an example only):

- To ensure the angle of repose of the wheat is provided by shippers.
- To calculate the probable angle of shifting of the grain by applying the ratio or constant for conversion. If wheat C = 0.719 (AOS = AOR x 0.719).
- To calculate the maximum permissible angle of roll ϕ by applying a safety factor of 1.5 to the angle of shifting (ϕ = AOS / 1.5).
- To determine the actual ϕ before deballasting, by performing a number of readings, taking the greatest value. If the value taken exceeds the value calculated, DO NOT proceed with the deballast.
- To estimate the time needed for deballasting, if possible including transit to the berth or place where the limitation applies. To commence the deballasting operation allowing enough time to reach such point without ballast, but without unnecessary delays.
- To check the weather conditions and reports, and if there is any suspicion of deterioration of sea conditions, to postpone. In case of a sudden deterioration of the weather during the process of deballasting beyond the calculated limits, to ballast again and cancel until the weather conditions warrant a safe deballasting and passage to the port.
- To check with the pilot and port authorities to prevent cancellations in entering the port. If such is the case, to ballast again without delay.
- When all the above conditions are met, to perform the deballasting operation.

It cannot be stressed enough that this methodology is not applicable for sea passages when the vessel doesn't meet the grain stability criteria, only for a vessel technically within port limits or under local jurisdiction (i.e. not on an international voyage) and a lapse of time needed to deballast tanks to the draft of the entry port (or ballast the tanks outside the exiting port), time lapse in which it is not believed the weather conditions will deteriorate to the point that such maximum angle of roll will be exceeded. It is also understood that the researched methodology should benefit from further studies and investigation as well as experimental results including studies of influence of sea condition (sea spectra) and ship's dynamic response (RAO) on the dynamic angle of sliding of grains, before being considered for modifying or adding to existing regulations and practices.

Nonetheless, this work represents to our knowledge a first known attempt to research the dynamic angle of sliding of the grain through experimental tests with a physical model of a ship's cargo hold, and to elaborate a much needed methodology of calculation for determining the maximum angle of roll at which the vessel can deballast (or ballast) in open waters when both the grain stability and the draft limits cannot be met.

7. CONCLUSIONS

- 1. The experimental tests confirmed the hypothesis that under dynamic conditions the grain shifts at angles of inclination smaller than the static angle of repose.
- 2. The experimental tests revealed the dynamic angle of shift is not only a function of the cohesive properties of the grain, but also the frequency of oscillations (period of roll), in that the higher the frequency (smaller period of roll), the greater the angle at which the grain slides. It was also found that at the scaled roll frequency the grain didn't even slide at large angles of inclination probably due to the absence of lateral and vertical accelerations of the fixed axis model ($f \approx 0.333\overline{3}$ Hz or higher).
- 3. The experimental test revealed that smaller piles in the cargo compartment have less weight and hence less internal friction in the pile and less friction with the boundary structure (tank top and sloping steel plate). It was also seen how the internal friction of grain on grain prevails over the friction of grain on structure, as the displacement over the bottom was greater than the laminar displacement of the various layers of grain.
- 4. The accuracy of the measurements and results are limited by the instruments and methods employed, but nonetheless they shed valuable information. The use of a level protractor - angle locator and hands to regulate the frequency of oscillation can introduce errors to the measurements and results, highlighting the need for greater resources: computer-based techniques for capturing sliding and mechanisms for controlling the frequency and amplitude of balance.
- 5. The results obtained in this thesis are only applicable to wheat, and for other types of grain, it is necessary to carry out a similar comparative study of angle of repose versus angle of shifting, to determine the conversion constant (ratio) and to calculate safety factors and probability of failure.
- 6. The determination of the probability of failure and reliability of the results are only an example of a possible methodology, subject to further studies and research, that could in the future lead to approved procedures for safe operation of deballasting before entering ports (or ballast after leaving), for ships loaded with wheat which are constrained by the draft and grain stability.

8. **RECOMMENDATIONS**

- 1. To continue the study of the dynamic angle of sliding compared to the static angle of repose of other types of grain, namely: Corn, barley, soybean, rye, rice, seeds (sunflower seeds, rapeseeds, cottonseeds, etc.) and others whose behaviour is similar to that of grain in its natural state: other cargoes with non-cohesive properties and angles of repose of less than 30° such as fertilizers (ammonium nitrate, urea, etc.).
- 2. To perform these other experiments with more sophisticated techniques for rolling the model and capturing and measuring the sliding. The model to be engaged to a motor with a speed and direction controlling mechanism to simulate the oscillations without disturbances. To perform more tests per type of grain in order to have more data to compare.
- 3. To use more elaborated probabilistic techniques when assessing the safety factor and probability of failure. When performing the Montecarlo simulation, to incorporate all uncertainties derived from the dynamic situation the vessel might encounter in open seas, including the variables from wave or sea spectra and vessel's response amplitude operator. To use Mathcad or similar software allowing more simulations and easier calculations.
- 4. The subsequent studies and research should be aimed to calculating reliable conversion factors or ratio of AOR to AOS, which would give sea masters a very useful information about the maximum rolling conditions under which the deballasting before entering (or ballasting after leaving) the port can be undertaken, when both the draft and grain stability criteria cannot be met simultaneously.
- 5. It would be also desirable that with the numeric results from further research, guidelines or procedures are elaborated and presented to competent authorities in charge of revising the regulations for their perusal, approval and implementation.

9. BIBLIOGRAPHY

Al-Hashemi, H and Al Moudi, O (2017) *A review on the angle of repose of granular material*. Dhahran, Saudi Arabia. King Fahd University.

Arndt, R (1968). Schüttgut und Kentersicherheit. Hansa. 105.

Assuero et al. (2006) *The correlation coefficient: An overview*. Sevilla, Spain. Taylor and Francis Group LLC. Available at URL: https://pdfs.semanticscholar.org/80cc/d0790a6889ea4517b378d 7ddf5eb49db5da9. pdf

Baltrop and Hifi (2012) *Reliability based Marine Structural Design*, course notes. Glasgow, UK. University of Strathclyde.

Bertram, V (2011) Practical Ships Hydrodynamics. Oxford, UK. Butterworth-Heinemann.

Biran, A.B. (2003) Ship Hydrostatics and Stability. Oxford, UK. Butterworth-Heinemann.

Dumberry, et al. (2018). *Erosion monitoring during core overtopping using a laboratory model with digital image correlation and X-ray microcomputed tomography*. Montreal, Canada. Revue Canadienne de Géotechnique. Available at URL: http://www.nrcresearchpress.com/doi/10.1139/cgj-2016-0684#.W8kM6S8ZPB

gCaptain (2016) Video: The Spectacular Salvage Operation to Save the Modern Express. Blog. Available at URL: https://gcaptain.com/video-the-spectactular-salvage-operation-to-save-the-modern-express/

Gifford, Will Duckett (2004), *Risk Analysis and the Acceptable Probability of Failure*, Risk Analysis. Available at URL: https://www.istructe.org/iabse/files/henderson04/paper_06.pdf

IGC (1991). International Code for the Safe Carriage of Grain in Bulk. London, UK. International Maritime Organization.

Iglesia et al. (2011) *Validation of centrifuge model scaling for Soil systems via Trapdoor tests*. Massachusetts, US. American Society of Civil Engineers.

Ileleji, K and Zhou B (2007) The angle of repose of bulk corn stover particles. West Lafayette, USA. Elsevier, Available at URL: https://engineering.purdue.edu/ABE/people/Papers/klein.ileleji.1/bulkcorn

IMSBC, code (2008) *International Maritime Solid Bulk Cargoes Code*. Edition 2013. London, UK. International Maritime Organization.

ISC (2008) International Code on Intact Stability. London, UK. International Maritime Organization.

Kamal, A (2016) *Guidance to Deck Officers while loading grain*. Marine Study. Available at URL: https://marinestudy.net/guidance-to-deck-officers-while-loading-grain/

Lumay et al. (2017) *The influence of grain shape, friction and cohesion on granular compaction dynamics*. Liege, Belgium. European Physical Journal.

Lumay et al. (2012) *Measuring the flowing properties of powders and grain*. Liege, Belgium. Elsevier. Available at URL: http://www.grasp.ulg.ac.be/article/2012_lumay_PT.pdf

NCB (1994) *General Information for Grain Loading*. Edition 2002. New York, US. National Cargo Bureau Inc.

Norby, R. (1962). The stability of coastal vessels. Trans. RINA, 104, 517-44.

Pirnia et al. (2016). *Development of a multiscale numerical modelling tool for granular materials*. Montreal, Canada. 69th Canadian Geotechnical Conference.

Rawson, K and Tupper E (1968) *Basic Ship Theory*. Edition 2001. Oxford, UK. Butterworth-Heinemann.

Rouse, P. (2014) *Comparison of methods for the measurement of the angle of repose of granular materials, pascal rouse,* Geotechnical testing journal.

Sharan, G and Lee, J (1970). *Coefficient of friction of wheat grain on grain and steel*. Ontario, Canada. Canadian Agricultural Engineering.

SOLAS (1974). International Convention for the Safety of Life at Sea, 1974 and protocols 1988. Edition 2009. London, UK. International Maritime Organization.

Spandonidis and Sryrou (2015) *Coupled granular material and vessel motion in regular beam seas*. Glasgow, UK. STAB2015.

Spearman, C (1904) The proof and measurement of association between two things. Leipzig, Germany.AmericanJournalofPsychology.AvailableatURL:https://academic.oup.com/ije/article/39/5/1137/806468

Tsimopoulou et al. (2011) *Rationalization of safety factors for breakwater design in hurricane-prone areas*. Delft, Netherlands. Delft University of Technology. Available at URL: http://edepot.wur.nl/207202

Voraa, E and Bauge K (2016) *Development and design of a ship model for use in education and research*. Gothenburg, Sweden. Chalmers University of Technology

Wawrzyński, W and Krata, P (2016) *Method for ships rolling period prediction with regards to non-linearity of GZ curve.* Warsaw, Poland. Journal of Theoretical and applied mechanics. Available at URL: https://www.researchgate.net/publication/309839271_Method_for_ship%27s_rolling_period_prediction _with_regard_to_non-linearity_of_GZ_curve

10. APPENDIX

10.1- APPENDIX 1

METHODOLOGY FOR CALCULATING GRAIN STABILITY

NCB Part I and II / TC Table II and III

- 1- The cargo and liquid compartments, weights, VCGs and FS moments are listed. The Vertical Moments are calculated as a product of the weight x VCGs
- 2- The lightship weight and constants are also listed with their respective VCGs. The Vertical Moments are calculated as a product of the weight x VCGs.
- 3- The weights of cargo and liquid compartments, LS and constant are added to obtain the Displacement. The Vertical Moments of compartment, LS and constant are added to obtain the total Vertical Moment. The FS moments are added to obtain the total FS moment
- 4- The total Vertical Moment is divided by the Displacement to obtain the vessel's KG
- 5- The total FS moment is divided by the Displacement to obtain the FS correction to the KG
- 6- The vessel's corrected KG is calculated by subtracting the KG FS correction
- 7- With the transversal metacentric height over the keel KM, the GM for the loading condition can be obtained by subtracting the KM Kg corrected.

NCB Part III / TC Table IV, V, VI

- 1- The cargo compartments, ullage or height, stowage factor and volumetric heeling moments are listed. The transversal heeling moments are calculated dividing the volumetric heeling moment by the stowage factor SF
- 2- The transversal heeling moments for filled compartments is corrected for vertical shifting of the center of gravity by multiplying it for a constant 1.06, unless already accounted for in the ship's data
- 3- The transversal heeling moments for partially filled or slack compartments is corrected for vertical shifting of the center of gravity by multiplying it for a constant 1.12, unless already accounted for in the ship's data
- 4- The value of the Total Heeling Moment is calculated by adding the transversal heeling moments for filled and for slack compartments.
- 5- The value of Allowable or Maximum Permissible Heeling Moment is obtained from tables with the Displacement and KG corrected above calculated
- 6- The two values of Total Heeling Moment and Allowable Heeling Moment, and if the latter exceeds the former, the Grain Stability Criteria is met.

10.2- APPENDIX 2

ACTUAL GRAIN CALCULATION AS PERFORMED BY PORT WARDEN ON A CANADIAN PORT

GENERAL PARTICULARS / PAR	TICULARITÉS - GENÉR	RALES					T+01-	
	12.0		Port of Regis	stry / Port d'imm	atriculation		IABLE	I/TABLEA
YPE OF VESSEL / TYPE DE NAV	/IPE		Singapo	ore				
Bulk Carrier Twee	en Decker		Official Numb	ber / Numéro ma	atricule	or IMO Num	ber / Numéro O	MI
Vracquier Vracquier Navi	e à entreponts		Call Sign / In	dicatif d'appel		96122	96	
Navire-citerne O Autre	(indiquer le type)		979368					
			Draft / Tirant	d'eau				
igne de charge Appropriée	► O W H.		10.869 Ereeboard / Franc bord					
			4.131	Tario-bold				
Deadweight / Port en lourd	Tons / Tonnes impériales	F.W.A Correction p	our eau douce	O Ins / po	Immersion		0	T.P.I.
oading Port(s) / Port(s) de chargement	Tonnes / métriques	24.80		Cms / cm	45.69		۲	T.P.C.
uebec, Canada								
ischarging Port(s) / Port(s) de décharge	ement							
ari, Italy								
rain stability information, approval authors	ority and date / Renseignen	nents sur la stabilité du	ı grain, administr	ration compéten	te et date] por-mm-bb)	Date
rawing No. HC404 ''G	rain Loading P	ooklotU Arr		100			22/04/2	010
		course wht	proved by	ADS			22/04/2	015
MT	MT	e type de grain, les s	surfaces immo	bilisées ou no	on immobilisé	ées et le lest.	•	\square
4200	MT 8531.9	MT SS2117		MT S36-	n immobilisé	64es et le lest. M T 3 2 10		
4200 DE	MT 85319	N - ÉTAT ALI DÉPA	Surfaces immo	MT 536-	n immobilisé	éées et le lest. M ₹ 3 2 1 0	BILITY CAL	
AT AT 42.00 De w and Stores (Constant's) jugge et aport, (constantes)	MT 8531.9 EPARTURE CONDITION Fresh Water / Eau douc	MT SS21:7 N-ÉTAT AU DÉPA	IRT Cargo / Cargaisc	MT S36-	n immobilisé	MT 3210	BILITY CALC	
MT 4200 DE ew and Stores (Constant's) uipage et appro. (constantes) 400.00 Tonns / t (impériales) (Tonns / t (impériales) (MT 85319 PARTURE CONDITION Fresh Water / Eau douc 100.00 Tonne	MT SS21:7 N - ÉTAT AU DÉPA se ((mériques))	IRT Cargo / Cargaisc 33,000.00	M T S 3 6 -	eriales)	MT 3210 FYPE OF STA TYPE OF STA TYPE J 2, 3, 4, 5 Sype 1, 2, 3, 4, 5	BILITY CALC CUL DE STA	ULATION BILITÉ icate Type) liquer le type
AT 4200 Provide the second se	MT SS319 PARTURE CONDITION Fresh Water / Eau dour 100.00 Tonne Ballast / Lest	MT SS21:7 N - ÉTAT AU DÉPA se ((mpériales)) ss / t (métriques) •	IRT Cargo / Cargaisc 33,000.00	MT SSG-	ériales)	MT S 2 10 Image: Second Se	BILITY CALC CUL DE STA , 6 or other (Ind , 6 ou autre (Ind	ULATION BILITÉ icate Type) liquer le type
MT 42.00 W and Stores (Constant's) ipage et appro. (constantes) Tons / t (métriques) (tkers / Combustible 465.00 Tons / t (métriques) (Tons / t (métriques) (Tons / t (métriques) (PARTURE CONDITION Fresh Water / Eau douc Dallast / Lest 300.00 Tonne	MT SS21:7 N - ÉTAT AU DÉPA se (is / t (impériales)) ss / t (impériales)) ss / t (impériales)) ss / t (impériales))	IRT Cargo / Cargaisc 33,000.00 Total Deadweigh 34,265.00	MT SSG- Tons / t (imp Tonnes / t (imp Tonnes / t (imp Tonnes / t (imp	ériales) (global ériales) (triques) (triques) (MT S 2 10 Image: state stat	BILITY CALC CUL DE STA	ULATION BILITÉ icate Type) liquer le type
ATC ATC ATC ATC ATC ATC ATC ATC	AT AT AT S S 31.9 AT S S 31.9 AT S S 31.9 D	MT SS21:7 N-ÉTAT AU DÉPA se s / t (impériales) o ss / t (impériale	IRT Cargo / Cargaisc 33,000.00 Total Deadweigh 34,265.00 In that will be exp excessive stress, excessive stress, excessi	M T M T S S 6 - Don Tons / t (imp Tonnes / t (imp	ériales)	Arrow of the lest	BILITY CALC CUL DE STA , 6 or other (Ind , 6 ou autre (Ind , 6 ou autre (Ind	ULATION BILITÉ cate Type) jiquer le type sts any versée et a charpente

Compartment Number Numéro du compartiment	Grain Cubic Volume en grains O ft ^a / pi ³ m ³	S.F. C.A.) ft³/T () m³/T	Weight / Poids Tons / t (impériales) Tonnes / t (métriques)	KG ◯ ft/pi ● m	Solid moments / = we = po	Moments des solide eight X KG
Light Ship / Navire léger	A Statistics of		8,847.00	10.44	V,	92 362 6
Crew & Stores Équipage et approvisionnements			400.00	13.00	1,	5 200 0
CARGO / CARGAISON						5,200.0
CH1	3,772.10	1.175	3,210.30	6.06	1	19,454.4
2H2	10,030.00	1.175	8,536.17	9.19	/	78,473.0
2H3	10,013.00	1.175	8,521.70	9.21	1.	78,493.4
2H4	10,025.00	1.175	8,531.91	9.20	J.	78,510.6
2H5	4,935.00	1.175	4,200.00	6.93	1	29,106.0
					in a faile	
						and the a
						New York Control of Co
	6					
					a sense a port	
				1		
						1
	Som	Subtotal (1) me partielle (1)	42,247.09	Subtotal (2) Somme part. (2)		381,600.19

Experimental investigation of the dynamic angle of grain sliding and its impact on ship's safety

Tank Number	Weight / Poids	KG	Liquid Moments / Moments des liquides	Free Surface Moments
Numero de la citerne	 Tons / t (impériales) Tonnes / t (métriques) 	◯ft/pi ●m	= weight X KG = poids X KG	Moments de carène liquide
1FOT-P	140.00	4.14	579.60	19.3
SFOT-S	105.00	1.74	182.70	1,298.3
SFOT-P	160.00	1.89	302.40	1,275.2
DOT-P	30.00	1.81	54.30	9.8
DOT-S	30.00	1.81	54.30	9.8
W-P	60.00	12.72	763.20	97.8
w-s	40.00	12.33	493.20	97.8
APT	200.00	9.78	1,956.00	1,805.0
				/
		11		11
Subtotal (1) Somme partielle (1)	765.00	Subtotal (2) Somme partielle (2)	4,385.70	Total P.S. Moments Total des moments de carène
Displacement Déplacement	43,012.09	Total Moments	385,985.89	4,613.00
TABLE III CALCULATION OF K	G & GM - DEPARTURE / TABLE	AU III CALCUL DE KG E	ET DE GM - DÉPART	
Uncorrected KG from: KG non corrigé:	Total moments (Table II) / Total des m Displacement (Table II) / Déplacem	noments (Tableau II) nent (Tableau II)	<u>385,985.89</u> 43,012.09	8.97 Off
Liquid F.S. gain from:	noments (Table II) / Total des moment Displacement (Table II) / Déplacer	s de carène liquide (Tableau nent (Tableau II)	$\frac{10}{43.012.09} = -$	0.11
Corrected KG / KG corrigé :			-	17 9.08
KM (from ship's stability information) fc KM (voir les renseignements sur la sta least GM:	r displacement shown in Table II bilité du navire) pour le déplacement in st not be less than 12 inches / 0.3m.) /	ndiqué au Tableau II / pi/m (ne doit pas être inférie	ur à 12 po./0.30m)	11.88
Ie plus petit GM : 1011 (Mid	or not be root than its moned / dronny	Part Construction of the second second		

Tank Number	Weight / Poids	KO KO	TAVORABLE - IN I ERMEDIAIRE	
Numéro de la citerne	Tons / t (impériales) Tonnes / t (métriques)	∩ ft/pi	Liquid Moments / Moments des liquides = weight X KG = poids X KG	Free Surface Moments Moments de carène liquid
1FOT-P	140.00	4.14	579.60	19.3
5FOT-P	130.00	1.80	234.00	1,275.2
5FOT-S	130.00	1.80	234.00	1,298.3
DOT5-P	30.00	1.81	54.30	. 9.8
DOT5-S	30.00	1.81	54.30	9.8
WT-P	75.00	13.03	977.25	97.8
TWT-S	75.00	13.03	977.25	97.8
FPT	264.00	1.52	401.28	1,926.8
		1/		,
Subtotal (1) Somme partielle (1)	874.00	Subtotal (2) Somme partielle (2)	3,511.98	Total F.S. Moments Total des moments de carène
Displacement Déplacement	43,121.09	Total Moments	385,112.17	4,734.80
ABLE III CALCULATION OF KG	& GM - DEPARTURE / TABLE	AU III CALCUL DE KG E	T DE GM - DÉPART	
Incorrected KG from: G non corrigé:	otal moments (Table II) / Total des mo Displacement (Table II) / Déplacem	oments (Tableau II) ient (Tableau II)	<u>385,112.17</u> 43,121.09	8.93 Off/r
iquid F.S. gain from:	oments (Table II) / Total des moments Displacement (Table II) / Déplacem	s de carène liquide (Tableau II ient (Tableau II)) 4,734.80 = 43,121.09	0.11
Corrected KG / KG corrigé :				9.04
(W) (from snip's stability information) for (M) (voir les renseignements sur la stability least GM: ha plue potification, ft/m (Musi	displacement shown in Table II ilité du navire) pour le déplacement in t not be less than 12 inches / 0.3m.) /	diqué au Tableau II pi/m (ne doit pas être inférieu	r à 12 po./0.30m)	2.73
- ie plus petit GM :				Canad
Experimental investigation of the dynamic angle of grain sliding and its impact on ship's safety

[®] Tank Number Numéro de la citerne	Weight / Poids O Tons / t (impériales)	KG	Liquid Moments / Moments des liquides	Free Surface Moments Moments de carène liquide
	Tonnes / t (métriques)	⊖ft/pi ●m	= poids X KG	
LFOT-P	140.00	4.14	579.60	19.3
SFOT-P	30.00	1.54	46.20	1,275.2
SFOT-S	130.00	1.81	235.30	1,298.3
5DOT-P	30.00	1.81	54.30	9.8
5DOT-S	30.00	1.81	54.30	9.8
W-P	75.00	12.99	974.25	// 97.8
rw−s	75.00	12.99	974.25	97.8
PT	264.00	1.52	401.28	1,926.8
-35an				
				en e
		/		/
Subtatal (4)				Table 1 5 6 Manuali
Somme partielle (1)	774.00	Somme partielle (2)	3,319.48	Total des moments de carèce liquide
	43,021.09	Total des moments	384,919.67	4,734.80
Incorrected KG from:	Total moments (Table II) / Total des mo	ments (Tableau II)	<u>384,919.67</u> =	8.95 Off/p
iquid F.S. gain from:	oments (Table II) / Total des moments	de carène liquide (Tableau II	<u>43,021.09</u> <u>4,734.80</u> =	0.11
sain de carene liquide: Corrected KG / KG corrigé :	Displacement (Table II) / Déplaceme	ent (rableau II)	43,021.09	9.06
CM (from ship's stability information) for CM (voir les renseignements sur la stab- least GM:	r displacement shown in Table II vilité du navire) pour le déplacement inc st not be less than 12 inches / 0.3m.) / r	diqué au Tableau II bi/m (ne doit pas être inférieu	r à 12 po./0.30m)	11.77
e plus petit GM :				<u> </u>

Compartment	Full/Pleins	Grain denth	Ctown	ago Eastor	Nature 11			
Number Numéro de compartiment	Slack/Fartiel	Hauteur du grains	Coefficie	age Factor ent d'arrimage	Volumetric Ups Moment de c volumé	etting Moment havirement trique	Upsetti Moment de	ng Moment e chavirement
	N FUIDO	()ft/pi ⊚ m	O ft ³ per Ton	m³ per Tonne	O∫ft⁴ / piť	m ⁴	m Tonnes	/ m t (métriou
	 Full/Pleins Slack/Partiel 	6.8	6	1.1750		6,646,00		5 656
	 Full/Pleins Slack/Partiel 			1 1750		1 045 00	1	5,050.
	Full/Pleins Slack/Particl			1.1750		1,945.00	VA /	1,655.
	• Full/Pleins			1.1750	1.7.000000	1,945.00	1/1	1,655.
	O Full/Pleins			1.1750		1,945.00	1	1,655.
	Slack/Partiel	6.3	6 🗸	1.1750	1	4,605.00	\checkmark	12,429.
	O Slack/Partiel							4
	O Slack/Partiel		nasadaran - Patro II				a state	
	O Full/Pleins O Slack/Partiel			1				
	O Full/Pleins							
	O Full/Pleins							
	O Slack/Partiel							
	Slack/Partiel							
	Slack/Partiel						0.00	
	O Full/Pleins							
	Full/Pleins		1					
	O Slack/Partiel						-	
	Slack/Partiel							
	Slack/Partiel							
	O Full/Pleins							
	Full/Pleins						and the second second	
	O Full/Pleins							
	Slack/Partiel							
	Slack/Partiel							
	Slack/Partiel							
e this total for Table V orporated in the ships	/IIA, and for Table V s data otherwise con	IIB only when the 12% correction for the ve	rtical shift of G in slack	compartments is	Total Upsetting N	loment		
		le Tableau VIIB seulement lorsque la valeu	r de 12% pour la corre	ction du déplacement	Moment de chavi	rement total		23,051.9
lisé ce total pour le Ta rtical de "G" des comp	ableau VIIA, et pour partiments partiellem	ent remplis, est incorporée dans les inform	ations du navire autre	nent complete le				
lisé ce total pour le Ta tical de "G" des comp bleau V pour calculer	ableau VIIA, et pour partiments partiellem l'angle de gite dans	ent remplis, est incorporée dans les inform le Tableau VIIB.	ations du navire, autre	ment complete le				Sec. Sec. Sec.
lisé ce total pour le Ta tical de "G" des comp bleau V pour calculer ABLE V UPSET ABLEAU V COF	ableau VIIA, et pour partiments partiellem l'angle de gite dans TING MOMEN RRECTION DU	ent remplis, est incorporée dans les inform le Tableau VIIB. T CORRECTION FOR VERTICA MOMENT DE CHAVIREMENT I	AL SHIFT OF G I	F NOT INCLUDED	IN SHIP'S DAT.	A S DANS LES I	DONNÉES DU	JNAVIRE
ilisé ce total pour le Ta rtical de "G" des comp bleau V pour calculer ABLE V UPSET ABLEAU V COR	ableau VIIA, et pour partiments partiellem l'angle de gite dans TING MOMEN RRECTION DU	ent remplis, est incorporée dans les inform le Tableau VIIB. T CORRECTION FOR VERTIC, MOMENT DE CHAVIREMENT I	AL SHIFT OF G I	F NOT INCLUDED	IN SHIP'S DAT.	A S DANS LES I	DONNÉES DU	INAVIRE
lisé ce total pour le Ta ritcal de "G" des comp bleau V pour calculer ABLE V UPSET ABLEAU V COP Total upset mome Total des moment	ableau VIIA, et pour partiments partiellem l'angle de gite dans TING MOMEN RECTION DU ent for full compar ts de chaviremen	ent remplis, est incorporée dans les inform le Tableau VIIB. T CORRECTION FOR VERTIC. MOMENT DE CHAVIREMENT I trent (see Table IV) t, compartiments pleins (voir le Table	ations du navire, autre AL SHIFT OF G I POUR UN RIPAG	F NOT INCLUDED E VERTICAL DE G 4 , 965 . 96	IN SHIP'S DAT, SI NON INCLU	A S DANS LES I	DONNÉES DU	5,263.9
ilisé ce total pour le T rical de 'S' des comp bleau V pour calculer ABLE V UPSET ABLEAU V COF Total upset moment Total des moment	ableau VIIA, et pour partiments partiellem l'angle de gite dans TING MOMEN RRECTION DU ent for full compar ts de chavirement	ent remplis, est incorporée dans les inform le Tableau VIIB. T CORRECTION FOR VERTIC, MOMENT DE CHAVIREMENT I trent (see Table IV) t, compartiments pleins (voir le Table	AL SHIFT OF G I OUR UN RIPAG au IV)	F NOT INCLUDED E VERTICAL DE G 4,965.96	IN SHIP'S DAT, SI NON INCLU x 1.06 1.00	A S DANS LES I	DONNÉES DU	5,263.9
ilisé ce total pour le T rical de '6' des comp ibleau V pour calculer ABLE V UPSET ABLEAU V COP Total upset momen Total des moment	ableau VIIA, et pour antiments particlem l'angle de gite dans TING MOMEN RRECTION DU ent for full compar ts de chavirement ant for slack comp	ent remplis, est incorportée dans les inform le Tableau VIIB. T CORRECTION FOR VERTIC, MOMENT DE CHAVIREMENT I tment (see Table IV) t, compartiments pleins (voir le Table artment (see Table IV)	ations du navire, autre AL SHIFT OF G I POUR UN RIPAG au IV)	F NOT INCLUDED E VERTICAL DE G 4,965.96	IN SHIP'S DAT. SI NON INCLU x 1.06 () 1.00	A S DANS LES I	DONNÉES DU	5,263.9
lisé ce total pour le Ta fical de "G" des comp bleau V pour calculer ABLE V UPSET ABLEAU V COP Total upset momen Total des moment Total upset momen Total des moment	ableau VIIA, et pour partiments partiellem l'angle de gite dans TING MOMEN RECTION DU ent for full compar ts de chavirement of for slack comp ts de chavirement of	ent remplis, est incorportée dans les inform le Tableau VIIB. T CORRECTION FOR VERTIC, MOMENT DE CHAVIREMENT I tment (see Table IV) t, compartiments pleins (voir le Table artment (see Table IV) t, compartiments partiellement rempli	ations du navire, autre AL SHIFT OF G I POUR UN RIPAG au IV)	F NOT INCLUDED E VERTICAL DE C 4,965.96	IN SHIP'S DAT. SI NON INCLU x 1.06 1.00 x 1.12 x 1.12	A S DANS LES I = =	DONNÉES DU	5,263.9
Ilsé ce total pour le Ta irial de 'G' des comp bleau V pour calculer ABLE V UPSET ABLEAU V COP Total upset moment Total upset moment Total des moment Total des moment (voir le Tableau IV	ableau VIIA, et pour aritments partiellem l'angle de gite dans TTING MOMEN RRECTION DU ent for full compar ts de chavirement ent for slack comp ts de chavirement 0	ent remplis, est incorportée dans les inform le Tableau VIB. T CORRECTION FOR VERTIC, MOMENT DE CHAVIREMENT I tment (see Table IV) , compartiments pleins (voir le Table artment (see Table IV) , compartiments partiellement rempli	ations du navire, autre AL SHIFT OF G I POUR UN RIPAC au IV)	F NOT INCLUDED E VERTICAL DE C 4,965.96 18,085.96	IN SHIP'S DAT, SI NON INCLU x 1.06 1.00 x 1.12 1.00	A S DANS LES I = = +	DONNÉES DU	5,263.9 20,256.2
Ilsé ce total pour le Ta irial de 'G' des comp bleau V pour calculer ABLE V UPSET Total upset mome Total upset momen Total upset momen Total des moment (voir le Tableau IV	ableau VIIA, et pour aritments partiellem l'angle de gite dans TING MOMEN RRECTION DU ent for full compar ts de chavirement ent for slack comp ts de chavirement /)	ent remplis, est incorporée dané les inform le Tableau VIB. T CORRECTION FOR VERTIC, MOMENT DE CHAVIREMENT I troent (see Table IV) t, compartiments pleins (voir le Table artment (see Table IV) t, compartiments partiellement rempli	ations du navire, autre AL SHIFT OF G I POUR UN RIPAC au IV)	F NOT INCLUDED E VERTICAL DE C 4,965.96 18,085.96	IN SHIP'S DAT, SI NON INCLU x 1.06 (1.00 x 1.12 (1.00	A S DANS LES I	DONNÉES DU	5,263.9
Ilsé ce total pour le Ta tical de "G" des comp bleau V pour calculer ABLE V UPSET Total upset mome Total upset mome Total des moment Total des moment (voir le Tableau IV	ableau VIIA, et pour aritments partiellem l'angle de gite dans TING MOMEN RRECTION DU ent for full compar ts de chavirement ent for slack comp ts de chavirement of,	ent remplis, est incorporée dané les inform le Tableau UII T CORRECTION FOR VERTIC, MOMENT DE CHAVIREMENT I tment (see Table IV) t, compartiments pleins (voir le Table artment (see Table IV) t, compartiments partiellement rempli	ations du navire, autre AL SHIFT OF G I POUR UN RIPAG au IV) s	F NOT INCLUDED E VERTICAL DE C 4 , 965 . 96 18 , 085 . 96 al Corrected Value o tal corrigé des mom	IN SHIP'S DAT, SI NON INCLU x 1.06 1.00 x 1.12 1.00 f Upsetting Mome ents de chavirem	A S DANS LES I =	DONNÉES DU	5,263.9 20,256.2 25,520.1
IIIsé ce total pour le Ta IIIsé ce total pour le Ta BLE V UPSET BALEAU V COP Total upset mome Total upset mome Total upset moment Voir le Tableau IV ABLE VI MAXIN	ableau VIIA, et pour aritments partiellem l'angle de gite dans TING MOMEN RRECTION DU ent for full compar ts de chavirement ent for slack comp ts de chavirement f)	ent remplis, est incorporée dant les inform le Tableau UII T CORRECTION FOR VERTIC, MOMENT DE CHAVIREMENT I tment (see Table IV) t, compartiments pleins (voir le Table artment (see Table IV) t, compartiments partiellement rempli	ations du navire, autre AL SHIFT OF G I POUR UN RIPAG au IV) s S Tot TABLEAU VI MA	F NOT INCLUDED E VERTICAL DE C 4 , 965 . 96 18 , 085 . 96 al Corrected Value o stal corrigé des mom	IN SHIP'S DAT, SI NON INCLU x 1.06 1.00 x 1.12 1.00 f Upsetting Mome ents de chavirem	A S DANS LES I = = + ent EMENT ADMIS	DONNÉES DU	5,263.9 20,256.2 25,520.1
Ilisé es total pour le Ta ilisé es total pour d'active ABLE V UPSET ABLEAU V COP Total upset mome Total upset moment Total upset moment Voir le Tableau IV ABLE VI MAXIN	ableau VIIA, et pour aritments partiellem l'angle de gite dans TING MOMEN RRECTION DU ent for full compar ts de chavirement ent for slack comp ts de chavirement) NUM ALLOWA	ent remplie, est incorporée dané les inform le Tableau VIII T CORRECTION FOR VERTIC/ MOMENT DE CHAVIREMENT I truent (see Table IV) t, compartiments pleins (voir le Table artment (see Table IV) t, compartiments partiellement remplie BLE UPSETTING MOMENTS /	ations du navire, autre AL SHIFT OF G I POUR UN RIPAG au IV) s Tot Tot TABLEAU VI MA	F NOT INCLUDED E VERTICAL DE C 4 , 965 . 96 18 , 085 . 96 al Corrected Value of stal corrigé des mom AXIMUM DE MOME Departure	IN SHIP'S DAT, S I NON INCLU x 1.06 1.00 x 1.12 1.00 f Upsetting Mome ents de chavirem	A S DANS LES I	DONNÉES DU	5,263.9 20,256.2 25,520.1
IIIsé es total pour le Ta IIIsé es comp bleau V pour calculer ABLE V UPSET Rabin V COP Total upset mome Total upset moment Total des moment Votal upset moment voir le Tableau IV ABLE VI MAXIN Rected KG (from T	ableau VIIA, et pour arritments partiellem l'angle de gite dans TING MOMEN REECTION DU ent for full compar ts de chavirement of to slack comp ts de chavirement of num ALLOWAI	ent remplis, est incorporée dané les inform le Tableau VIII T CORRECTION FOR VERTIC/ MOMENT DE CHAVIREMENT I truent (see Table IV) t, compartiments pleins (voir le Table artment (see Table IV) t, compartiments partiellement rempli BLE UPSETTING MOMENTS /	ations du navire, autre AL SHIFT OF G I POUR UN RIPAG au IV) s Tot TABLEAU VI MA	F NOT INCLUDED E VERTICAL DE G 4,965.96 18,085.96 al Corrected Value of tal corrigé des mom AXIMUM DE MOME Departure Départ	IN SHIP'S DAT. S I NON INCLU x 1.06 1.00 x 1.12 1.00 I Upsetting Mome ents de chavirem INT DE CHAVIR Inte	A S DANS LES I	DONNÉES DU	5,263.9 20,256.2 25,520.1
Ilisé ce total pour le Ta Ilisé ce total pour le Ta ABLEAU V pour calculer ABLEAU V COF Total upset momen Total upset momen Total upset moment (voir le Tableau IV ABLE VI MAXIN rected KG (from Ta	ableau VIIA, et pour arritments partiellem l'angle de gite dans TING MOMEN REECTION DU ent for full compar ts de chavirement of to slack comp ts de chavirement of num ALLOWAI	ent remplis, est incorporée dant les inform le Tableau VIII T CORRECTION FOR VERTIC/ MOMENT DE CHAVIREMENT I truent (see Table IV) t, compartiments pleins (voir le Table artment (see Table IV) t, compartiments partiellement rempli BLE UPSETTING MOMENTS /	ations du navire, autre AL SHIFT OF G I POUR UN RIPAG au IV) s Tot TABLEAU VI MA	F NOT INCLUDED E VERTICAL DE G 4 , 965 . 96 18 , 085 . 96 al Corrected Value of tal corrigé des mom AXIMUM DE MOME Departure Départ S	IN SHIP'S DAT. S I NON INCLU x 1.06 1.00 x 1.12 1.00 f Upsetting Mome ents de chavirem INT DE CHAV/R Inte 0.08	A S DANS LES I = + = + EMENT ADMIS primediate rmédiaire 9.04	DONNÉES DU	5,263.9 20,256.2 25,520.1 rrival rrivée 9:0
ilisé ce total pour le Ta rical de '6' des comp bibleau' V pour calculer ABLEAU V DPSET ABLEAU V COF Total upset momen Total upset momen Total upset momen Total des moment (voir le Tableau IV ABLE VI MAXIM Rected KG (from Ta placement (from Ta	ableau VIIA, et pour arritments partiellem l'angle de gite dans TING MOMEN RRECTION DU ent for full compar ts de chavirement ats de chavirement () NUM ALLOWAI able III) / KG corri	ent remplis, est incorporée dané les inform le Tableau VII T CORRECTION FOR VERTIC/ MOMENT DE CHAVIREMENT I truent (see Table IV) t, compartiments pleins (voir le Table artment (see Table IV) t, compartiments partiellement rempli BLE UPSETTING MOMENTS / gé (voir Tableau III) = nent (voir Tableau III) =	AL SHIFT OF G I OUR UN RIPAG au IV) s Tot TABLEAU VI MA	F NOT INCLUDED E VERTICAL DE G 4 , 965 . 96 18 , 085 . 96 al Corrected Value of tal corrigé des mom AXIMUM DE MOME Departure Départ S 43 , 012	IN SHIP'S DAT. S I NON INCLU x 1.06 1.00 x 1.00 x 1.12 1.00 FUpsetting Mome ents de chavirem INT DE CHAVIR Inte 0.08 .09	A S DANS LES I = = + t EMENT ADMIS primediate rmédiaire 9.04 43,121.05	DONNÉES DU	5,263.9 5,263.9 20,256.2 25,520.1 rrival rrive 9:0
illeé ce total pour le Ta ide Scomp baleau V pour calculer ABLE V UPSET ABLEAU V COF Total upset mome Total upset moment Total upset moment Total upset moment (voir le Tableau IV ABLE VI MAXIM Rected KG (from Ta placement (from Ta Maximum allowab Maximum de mom	ableau VIIA, et pour araitments partiellem l'angle de gite dans TING MOMEN RRECTION DU ent for full compar ts de chavirement ent for slack comp ts de chavirement /) MUM ALLOWAI able III) / KG corri able III) / KG corri able II) / béplacer le upsetting mom	ent remplis, est incorporée dané les inform le Tableau UII T CORRECTION FOR VERTIC/ MOMENT DE CHAVIREMENT I truent (see Table IV) t, compartiments pleins (voir le Table artment (see Table IV) t, compartiments partiellement rempli BLE UPSETTING MOMENTS / gé (voir Tableau III) = nent (voir Tableau II) = nent (voir Tableau II) = nent (voir m ship's stability book)	AL SHIFT OF G I OUR UN RIPAG au IV) s Tot TABLEAU VI MA pilité du navíre)	FNOT INCLUDED EVERTICAL DE G 4,965.96 18,085.96 al Corrected Value of tal corrigé des mom AXIMUM DE MOME Departure Départ S 43,012 27,902	IN SHIP'S DAT. S I NON INCLU x 1.06 1.00 x 1.00 x 1.12 1.00 FUpsetting Mome ents de chavirem INT DE CHAVIR Inte 0.08 1.09 2.00 JA 57	A S DANS LES I = = + mts ent EMENT ADMIS prinediate médiaire 9.04 43,121.09 27,633.42	DONNÉES DU	5,263.9 5,263.9 20,256.2 25,520.1 frival rive 9.0 13,021.0 27,498.2
Ilisé ce total pour le T ABLE V UPSET ABLEAU V COF Total upset mome Total upset mome Total upset mome Total upset moment Total upset moment (voir le Tableau IV BLE VI MAXIM rected KG (from Ta Jacement (from Ta Maximum allowab Maximum de mom Actual corrected v	ableau VIIA, et pour araitments partiellem l'angle de gite dans TING MOMEN RRECTION DU ent for full compar ts de chavirement ent for slack comp ts de chavirement /) MUM ALLOWAI able III) / KG corri able III) / KG corri able III) / KG corri le upsetting mom ent de chavirement alue of upsetting	ent remplie, est incorporée dané les inform le Tableau UII T CORRECTION FOR VERTIC/ MOMENT DE CHAVIREMENT I truent (see Table IV) t, compartiments pleins (voir le Table artment (see Table IV) t, compartiments partiellement remplie BLE UPSETTING MOMENTS / gé (voir Tableau III) = enet (voir Tableau III) = enet (voir Tableau II) = ent (voir Tableau II) = ent (orm sible' voir lie manuel de stat moments (from Table V)	AL SHIFT OF G I OUR UN RIPAG au IV) s Tot TABLEAU VI MA silité du navíre)	FNOT INCLUDED EVERTICAL DE G 4,965.96 18,085.96 al Corrected Value of tal corrigé des mom AXIMUM DE MOME Departure Départ 9 43,012 27,902 25,520	IN SHIP'S DAT. S I NON INCLU x 1.06 1.00 x 1.12 1.00 ILL2 IL2 I	A S DANS LES I = = + mts ent EMENT ADMIS prinediate médiaire 9.04 43,121.09 27,633.42 25.520.10	DONNÉES DL	5,263.9 5,263.9 20,256.2 25,520.1 rrival 9:0 13,021.0 27,498.2 25,520.1

10.3- APPENDIX 3

CONSIDERATIONS ON THE COMPLIANCE OF RELEVANT REGULATIONS WHEN DEBALLASTING AT SEA

- 1. The international Grain Code, Part A Specific Requirements, 7 Stability requirements, 7.1 requires minimum intact stability requirements for any ship carrying bulk grain, to be met **throughout the voyage**.
- 2. The International Grain Code was adopted by Resolution MSC.23(59) to amend SOLAS 1974 including Chapter VI, Part C
- 3. The SOLAS 1974 in its Part A Applications, definitions, etc., Regulation 2, definitions, 2(d) International voyage means a voyage from a country to which the present convention applies to a **port outside such country**, or conversely.
- 4. Accordingly, once the ship arrives to the port limits, it has rendered its voyage according to SOLAS.

10.4 - APPENDIX 4

GENERAL ARRANGEMENT PLAN

10.5- APPENDIX 5

LOADING CONDITIONS

10.5.1 - DEPARTURE CONDITION WITH FULL BUNKERS AND WITHOUT BALLAST

A- WEIGHT DISTRIBUTION, INTACT STABILITY PARAMETERS

							05 - 0	3 - 20)18 11:05:	01 Page: 1
Seawa	ater Densit	project y : 1.025	N.O. to MT/M^3	o Lom	e departure Strer	before ball ngth Conditi	lasting .on : S	J SEA GOI	ING	
					DISPLACEME	NT SUMMARY				
	I	TEM	WEIGH	ΗT	L.C.G.	V.C.G.	т.с	.G.	F.S.MT.	GRAIN MT
			(T)		(M)	(M)	()	1)	(T-M)	(T-M)
	GRAIN BULK	CARGO	2620	0.00	98.68	7.66		0.00		16889
	TOTAL C A	RGO	2620	0.00	98.68	7.66		0.00		16889
	FUEL OIL		62	6.00	72.84	1.50		-0.74	3863	
	DIESEL OIL		13	0.00	29.33	1.94		-1.06	280	
	LUB OIL	D	17	0.00	0.00	11 20		1.00	200	
	UNTED DAIL	K NGT		5.00	101.06	11.30		-1.90	299	
	MISC ITEM	s.		0.00	0.00	0.00		0.00	0030	
	DFAD	WEIGHT	2719	1 00	97 14	7 50		-0.03	11072	16889
	LIGH	TSHIP	854	0.71	81.46	10.10		0.00		
	DISP	LACEMENT	3573	1.71	93.40	8.12		-0.03	11072	16889
			TRIM -	DRAF	TS				STABI	ILITY
Dr	aft at LCF	= 9	.51 M	MCT	(tm/cm) =	557	.9	KM	= 1	9.95 M
LC	B from AP	= 93	.40 M	TRI	4 by STERN =	-0.	14 M	KG	(solid)=	8.12 M
LC	G from AP	= 93	.40 M	LCF	from AP =	87.	29 M	F S	5 Cor =	0.31 M
AI	R DRAFT	= 33	.83 M	Drai	ft Fwd =	9.	9.44 M GM		(solid)=	1.82 M
PR	OPELLER IMM	R= 16	1.7 %	Drai	ft Aft =	9.	.58 M KG		(fluid)=	8.43 M
AN	GLE OF HEEL	= Stbd (.98 °	Drai	ft Amid =	9.51 M G		GM	(fluid)=	1.51 M
	MINIMUM	KG' FOR CON MAXIMUM PER REQUIRED GM'	DITION = MITTED P FOR DAI	= KG(KG' E M. S1	solid) + F : OR INTACT S TAB. (SOLAS	5 Cor = 8.12 TABILITY (A7 CH. II-1,RE(2 + 0.3 749-WE2 G.25 &	31 ATHER) REG.2	= 8.43 M = 9.08 M 7 OF ICLL) =	= 0.86 M
		ACTUAL GRAI	N HEELIN	IG MO	MENT				= 16889	ТМ
		ALLOWABLE G	RAIN HEE	ELING	MOMENT (SO	LAS 74)			= 12913	ТМ
		MAX S.F. PE MAX B.M. PE	RCENTAGE RCENTAGE	с то с то	ALLOWABLE = ALLOWABLE =	59 % AT FF 72 % AT FF	RAME 18 RAME 18	88 82		
		WARNIN	G : STA	ABILI	TY CRITERIA	ARE NOT SAT	ISFIE	D IN TH	HIS CONDITIC	DIN

	05 - 03 - 2018 11:05:01 Page: 2											
	proje	ct N.O. to	Lome de	epartur	e before ba	llasting	1					
Seawater Density :	1.02	5 MT/M^3		Str	ength Condi	tion : S	EA GOING	3				
GRAIN CARGO IN	BULK		DEF	ADWEIGH	I BREAKDOW	N						
	1	TYPE OF	S.G.	8	WEIGHT	VCG	LCG	TCG	COND.	G.H.M		
CARGO SPACE		CARGO	CF/MT	TOT	in Tonnes	(M)	(M)	(M)		(T-M)		
NO1 C.HOLD	GRA	INI	42.500	62	2400.00	5.90	157.11	0.00	SLACK	3969		
NO2 C.HOLD	GRA	IN1	42.500	100	6377.50	8.43	134.48	0.00	UNTRM	311		
NO3 C.HOLD	GRA	INI	42.500	100	6149.00	8.49	108.66	0.00	UNTRM	311		
NO4 C.HOLD	GRA	IN1	42.500	54	2800.00	5.38	83.80	0.00	SLACK	6601		
NO5 C.HOLD	GRA	INI	42.500	100	6146.50	8.49	59.05	0.00	UNTRM	311		
NO6 C.HOLD	GRA	IN1	42.500	53	2327.00	5.74	36.46	0.00	SLACK	5386		
тот	AL	GRAIN			26200.00	7.66	98.68	0.00		16889		
		5.G.	\$		WEIGHT	VCG	T	CG	TCG	F.S.M.		
- OTHER ITEMS -	-	T/M^3	TOT		in Tonnes	(M)	(M)	(M)	(T-M)		
FUEL OIL	TAN	KS										
NO1 HFO T		0.980		20	40.00	3	.00 1	68.57	-0.05	100		
NO2 HFO T P		0.980		42	150.00	0	.37	83.80	5.50	1381		
NO2 HFO T S		0.980		42	150.00	0	. 37	83.80	-5.50	1381		
NO3 HFO T P		0.980		6	10.00	0	.05	63.80	4.00	296		
NO3 HFO T S		0.980		23	40.00	0	.21	63.80	-4.00	296		
NO4 HFO P(LS)		0.980		95	95.00	0	.86	50.60	4.00	169		
NO4 HFO S(LS)		0.980		95	95.00	0.86		50.60	-4.00	169		
NO2 HFO SETTL		0.980		47	15.00	11	.61	15.81	-7.87	21		
NO2 HFO SERV		0.980		50	15.00	11	.66	13.41	-7.76	18		
NO1 HFO SERV		0.980		26	7.00	11	.33	11.02	-7.38	11		
NO1 HFO SETTL		0.980		22	7.00	11	.26	8.24	-7.16	10		
NO1 HFO OVRFL		0.980		17	2.00	13	.85 1	68.90	-2.00	9		
TOTAL	FUI	EL OI	L		626.00	1	.50	72.84	-0.74	3863		
DIESEL OI	т. т	ANKS		1	Note: <u>Unde</u>	lined F	<u>SM</u> der	otes us	e of maxi	mum FSM		
MDO STOR P		0.850		78	55.00	0	.81	32.42	-3.28	130		
MDO STOR S		0.850		78	55.00	0	.81	32.42	3.28	130		
MDO SERV		0.850		55	11.00	8	.41	10.39	-6.57	5		
MDO SETTL P		0.850		22	9.00	7	.74	14.70	-7.24	15		
TOTAL D	IES	SEL O	IL		130.00	1	.94	29.33	-1.06	280		
				. 1	Note: <u>Under</u>	lined F	SM der	otes us	e of maxi	mum FSM		

							-				
				05 - 03 -	2018 11	:05:01 P	age: 3				
r proje	ct N.O. to	Lome depar	ture before bal Strength Cordit	llasting	GOING						
Scawaoci Scholoy , 1.02	5 m/n 5		Solongon condit	10H . DEA	001110						
	S.G.	ę	WEIGHT	VCG	LCG	TCG	F.S.M.				
- OTHER ITEMS -	T/M^3	TOT	in Tonnes	(M)	(M)	(M)	(T-M)				
LUB OIL TANKS											
NO1 CYL O STR	0.900	0	0.00	0.00	25.00	4.03	0				
NO2 CYL O STR	0.900	0	0.00	0.00	25.00	1.00	0				
M/E LO STR	0.900	0	0.00	0.00	15.82	7.26	0				
M/E LO SET	0.900	0	0.00	0.00	13.43	7.05	0				
G/E LO STR	0.900	0	0.00	0.00	11.09	6.23	0				
G/E LO SET	0.900	0	0.00	0.00	9.03	6.65	0				
M/E LO SUMP	0.900	0	0.00	0.00	18.20	0.00	0				
TOTAL LU	B OIL		0.00	0.00	0.00	0.00	0				
Note: <u>Underlined FSM</u> denotes use of maximum FSM											
FRESH WATER	TANKS										
FWT P	1.000	59	45.00	12.28	-1.09	5.87	36				
IWI S	1.000	68	100.00	12.41	0.94	-6.18	92				
DISILL W IK	1.000	11	5.00	11.16	2.43	6.07	16				
TOTAL FFFS	н W 2 т	/5 E.R	170.00	4.30	1 10	-1 90	200				
IOIRD IRES	11 WAI	LK	Note: Under	lined FSM	denotes 1	ise of maxi	mum FSM				
			<u></u>								
MULTILOAD -											

				05 - 03 -	2018 11	:05:01 Pa	age: 4
	project N.O. to	Lome depar	ture before bal	lasting			
Seawater Density :	1.025 MT/M^3		Strength Condit	ion : SEA (GOING		
	S.G.	90	WEIGHT	VCG	LCG	TCG	F.S.M.
- OTHER ITEMS -	T/M^3	TOT	in Tonnes	(M)	(M)	(M)	(T-M)
BALLAST WA	ATER TAN	КS					
F.P.TK	1.025	0	2.00	0.05	171.63	-0.01	44
NO1 BWT P	1.025	0	4.00	0.02	155.87	4.07	487
NO1 BWT S	1.025	0	4.00	0.02	155.87	-4.07	487
NO2 DBWT P	1.025	1	3.00	0.01	134.40	8.70	98
NO2 DBWT S	1.025	1	3.00	0.01	134.40	-8.70	98
NO2 TBWT P	1.025	1	1.00	10.78	135.00	11.73	0
NO2 TBWT S	1.025	1	1.00	10.78	135.00	-11.73	0
NO3 DBWT P	1.025	1	5.00	0.01	108.60	5.76	1988
NO3 DBWT S	1.025	1	5.00	0.01	108.60	-5.76	1988
NO3 TEWT P	1.025	1	1.00	10.78	108.60	11.73	0
NO3 TEWT S	1.025	1	1.00	10.78	108.60	-11.73	0
NO4 BWI P	1.025	1	5.00	0.12	83.80	10.50	3
NO4 BWT 5	1.025	1	5.00	0.12	83.80	-10.50	3
NOS DEWI P	1.025	2	4.00	0.02	61.59	0.50	81
NOS DEWI S	1.025	1	4.00	10.79	59.00	11 71	
NOS IBWI P	1.025	1	1.00	10.78	59.00	-11 71	0
NOS IBWI S	1.025	1	4.00	0.04	41 90	3 44	136
NOG BWT S	1.025	1	4.00	0.04	41.90	-3.44	136
NOT DEWT P	1.025	1	3.00	0.01	135.00	4.00	487
NO7 DBWT S	1.025	1	3.00	0.01	135.00	-4.00	487
APT	1.025	0	1.00	7.05	4.99	0.00	25
NO4 C.HOLD/WB	1.025	0	0.00	0.00	83.80	0.00	0
TOTAL BAI	LLAST WA	TER	65.00	1.14	101.06	0.00	6630
			Note: Under:	lined FSM	denotes u	use of maxi	mum FSM
MULTILOP	A D						

	CONDI	ITION'S KG' = 8.	43 METERS			
	CROSS	S CURVES KG = 0.	00 METERS			
	RIGHTING	ARM G'Z = GZ -	GG' SIN (0)			
θ	SIN(0)	GZ	GG' SIN (θ)	G'Z		
10.0	0.174	1.741	1.464	0.277		
20.0	0.342	3.511	2.884	0.627		
30.0	0.500	5.250	4.216	1.034		
40.0	0.643	6.779	5.420	1.360		
50.0	0.766	7.912	6.459	1.452		
60.0	0.866	8.595	7.302	1.293		
70.0	0.940	8.854	7.923	0.931		
STABILI	TY CRITERIA (A749)	ACTU	AL VALUE	REQUIRED		
AREA FROM 0 T	0 30 DEG		0.247 M RAD	0.055 M R		
AREA FROM 0 T	0 40.0 DEG		0.458 M RAD	0.09 M R		
AREA FROM 30	TO 40.0 DEG		0.211 M RAD	0.03 M R		
RIGHTING ARM	AT 30 DEG		1.034 M	0.2 M		
MAX RIGHTING .	ARM	1.47	6 M AT 49 DEG	AT ANGLE >=25 DI		
INII MEIACEN	IKIC HEIGHI		1.51 M	0.15 M		
GRAIN S	TAB.CRIT. (SOLAS74)	ACTU	AL VALUE	REOUIRED		
INIT METACEN	TRIC HEIGHT		1.51 M	0.30 1		
ANGLE OF HEEL			14.8 DEG	12 DEG. or DK EDG		
				IMMERS ANG = 23.2 DH		
NET AREA UP T	O QMX(40 DEG)		0.222 M RAD	.075 M-R		
	I.M.O	WEATHER CRITERIA	Res.A.749			
Th(DE)	ANGLE OF UPPER DE	ECK IMMERSION		: 23.23 DEG		
Th(DE)*.80				: 18.58 DEG		
Th (F)	ANGLE OF FLOODING	j		: 47.27 DEG		
A	LATERAL WINDAGE A	AREA (SHIP UPRIGH	IT)	: 1829 M2		
н	WIND PRESSURE LEV	VER FROM MID DRAE	т	: 11.739 M		
DW	STEADY WIND HEEL	ING ARM		: 0.031 M		
In (0)	RESULTANT ANGLE (DF EQUILIBRIUM		: 1.187 DEG		
1w2=1.5*1w1			_	: 0.046 M		
Th(1)	ANGLE OF WINDWAR	D ROLL DUE TO WAY	/E	: 20.32 DEG		
In(c)	ANGLE OF 2nd INTH	ERCEPT OF GZ-curv	re WITH 1w2			
in(2)	MINIMUM OF Th(F)	or 50 deg or Th	(C)	: 47 DEG		
				: 0.112 M RAD		
AKLA A	· 1) 75 (0) -5	ld be less that 1	Edog on 000 - 5	: 0.607 M RAD		
AREA A AREA B		id be less than l	loaeg or 80% OF 1	IN (DE)		
AREA A AREA B REQUIREMENTS	• 1) 11(0) 510d.	14 he 1	Deserve D			

GZ CURVE

DEFLECTIONS (SF & BM)

CASE 1	SE	A GOING			
		Max. All.	. SF (MT)	Max. All.	BM (TxM)
Frame		(+)	(-)	Sagging	Hogging
-6	;	1019	-1019	-5097	5097
35		1733	-1733	-15291	32620
60		3109	-3109	-76453	69317
93		3150	-3129	-109276	86850
122		3109	-3109	-109276	86850
155		3109	-3150	-109276	86850
188		3109	-3109	-42813	38838
213		1600	-1600	-8461	8655
CASE 2 :	IN	HARBOR			
		Max. All.	. SF (MT)	Max. All	. BM (TxM)
Frame		(+)	(-)	Sagging	Hogging
-6	;	1233	-1233	-12915	12640
35		2803	-2803	-53007	69011
60		4679	-4679	-145607	136086
93		4343	-4343	-219429	193191
122		4302	-4302	-219429	193191
	.	1800			100100
155		4720	-4720	-209062	183180
155		4720	-4720 -4811	-209062 -95382	89592
155 188 213		4720 4811 2253	-4720 -4811 -2253	-209062 -95382 -26697	89592 26269
155 188 213 CASE 3 :	FL	4720 4811 2253 OODING CONDITION	-4720 -4811 -2253	-209062 -95382 -26697	89592 26269
155 188 213 CASE 3 :	FL	4720 4811 2253 OODING CONDITION Max. All.	-4720 -4811 -2253	-209062 -95382 -26697 Max. All.	89592 26269
155 188 213 CASE 3 : Frame	FL	4720 4811 2253 00DING CONDITION Max. All. (+)	-4720 -4811 -2253 . SF (MI) (-)	-209062 -95382 -26697 Max. All Sagging	89592 26269
155 188 213 CASE 3 : Frame -6	FL	4720 4811 2253 00DING CONDITION Max. All. (+) 1060	-4720 -4811 -2253 . SF (MT) (-) -1060	-209062 -95382 -26697 Max. All. Sagging -6830	. BM (TxM) Hogging 6769
155 188 213 CASE 3 : Frame -6 35	FL	4720 4811 2253 OODING CONDITION Max. All. (+) 1060 1906 2415	-4720 -4811 -2253 . SF (MT) (-) -1060 -2171 4252	-209062 -95382 -26697 Max. All. Sagging -6830 -23649	. BM (TxM) Hogging 32620 00000
155 188 213 CASE 3 : Frame -6 35 60	FL	4720 4811 2253 OODING CONDITION Max. All. (+) 1060 1906 3415 2415	-4720 -4811 -2253 . SF (MT) (-) -1060 -2171 -4353 2212	-209062 -95382 -26697 Max. All. Sagging -6830 -23649 -88746	. BM (TxM) Hogging 6769 32620 80530
155 188 213 CASE 3 : Frame -6 35 60 93	FL	4720 4811 2253 OODING CONDITION Max. All. (+) 1060 1906 3415 3415 3415	-4720 -4811 -2253 . SF (MT) (-) -1060 -2171 -4353 -3313 -2202	-209062 -95382 -26697 Max. All. Sagging -6830 -23649 -88746 -134027	. BM (TxM) Hogging 6769 32620 80530 103976
155 186 213 CASE 3 : Frame -6 35 60 93 122	FL	4720 4811 2253 OODING CONDITION Max. All. (+) 1060 1906 3415 3415 3415 3364 2822	-4720 -4811 -2253 . SF (MT) (-) -1060 -2171 -4353 -3313 -3293 -2204	-209062 -95382 -26697 Max. All. Sagging -6830 -23649 -88746 -134027 -134027	EM (TxM) Hogging 6769 32620 80530 103976 103976
155 186 213 CASE 3 : Frame -6 35 60 93 122 155	FL	4720 4811 2253 OODING CONDITION Max. All. (+) 1060 1906 3415 3415 3415 3364 3822 2264	-4720 -4811 -2253 . SF (MT) (-) -1060 -2171 -4353 -3313 -3293 -3394 -2222	-209062 -95382 -26697 Max. All. Sagging -6830 -23649 -88746 -134027 -134027 -129460	BM (TxM) Hogging 6769 32620 80530 103976 103976 103976
155 186 213 CASE 3 : Frame -6 35 60 93 122 155 186 213	5 5 5	4720 4811 2253 OODING CONDITION Max. All. (+) 1060 1906 3415 3415 3415 3415 3364 3822 3364 1733	-4720 -4811 -2253 . SF (MT) (-) -1060 -2171 -4353 -3313 -3293 -3394 -3293 -3293 -1733	-209062 -95382 -26697 Max. All Sagging -6830 -23649 -88746 -134027 -134027 -129460 -54434 -12232	EM (TxM) Hogging 6769 32620 80530 103976 103976 103976 103976 103976

				05 - 03 - 2018 11:05:01	Page: 7
			project N.O. to Lome departure	e before ballasting	
Seaw	ater Dem	nsity	: 1.025 MT/M^3 Stre	ength Condition : SEA GOING	
		+++	+ S.F. ''' S.F. Max.All	*** B.M B.M. Max.All	
FRM	S.F.	-	= = = Bulkhead Correction	(+ HOG, - SAG)	B.M. FRM
AE	0 -				0 AE
-1	117			·+_ ·	278 -1 723 3
8	226		· · · ·	· · · · ·	1441 8
11	213			*+ '	1898 11
19	120			x .	3313 19
23	-18		.' :†	*	3586 23
30	-305		· +	*	2886 30
35	-632 -		' +*		1150 35
41	-789		· +. *		-2072 41
45	-915		· + *		-4688 45
48 52	-1014		. + *		-6921 48
55	-1329	•	. + *	. '	-13268 55
60 63	-1569'-		+ * + *	'	-18925 60
66	-1086	•	. + *		-24961 66
70	-875	· · ' ,	+*		-27987 70
77	-574.		• * +		-31821 77
81	-418.		* +	· · · · ·	-33299 81
88	-140.		* +		-34672 88
93	168 ! -		*	-+ '	-34481 93
99	-116.		* +	+ · · · · ·	-34225 95
102	-264.		* +		-34540 102
108	-561.		· * + · * +		-36354 108
113	-810.		* +	. ' .	-38959 113
117	-1011.		*+		-41764 117
124	-1028.	•	* +	· · · · · · · · · · · · · · · · · · ·	-47848 124
128	-882.	1 e.	* + *		-50794 128
135	-640.		* +	:	-54865 135
138 142	-534. -391.		* +		-56192 138
146	-246.	•	* +		-58475 146
149 155	-136.	·	* +	- +	-58852 149
157	403	' :	*	+	-57642 157
160	540 717	1 i .	*	+ '	-56428 160 -54308 164
167	846		. *	+	-52349 167
172	1053 1172		*	+ . '	-48414 172
178	1288	•	*	+	-42627 178
182 186	1437 1635		- * *	.+ '	-38157 182
188	1826'-				-30308 188
193	1601	•	- *	· + '	-23317 193
200	1278		*	+	-15069 200
204	1112		*	· + '	-11136 204
213	888 -		+ *	+	-4600 213
216	682			. +	-3125 216
226	161		•	· . · · ·	-535 226
231	29			· · ·	-146 231
R.F.	0 -		MAX S.F. PERCENTAGE TO ALI	LOWABLE = 59 % AT FRAME 188	0 FE
l I			MAX B.M. PERCENTAGE TO ALI	LOWABLE = 72 % AT FRAME 182	
	- M U L	TILO) A D		

HOLD MASS TABLES

				0	5 - 03 - 203	18 11:05:0)1 Page: 8	8				
projec	ct N.O. to	Lome depart	ure befo	re balla	sting							
Seawater Density : 1.025 MT/M^3 Strength Condition : SEA GOING												
LOCAL LOADING DIAGRAMS ANALYSIS												
DIAGRAM	MEAN	CARGO	F. O.	W. B.	SUM OF	MIN REQ.	MAX. PERM.					
Seagoing	DRAFT	MASS (MT)	WT (MT)	WT (MT)	MASS (MT)	MASS (MT)	MASS (MT)					
NO1 C.HOLD	9.46	2400	0	0	2400	381	6900	OK				
NO1&2 C.HOLDS	9.47	8778	0	0	8778	1836	11127	OK				
NO2 C.HOLD	9.48	6378	0	0	6378	0	6465	OK				
NO2&3 C.HOLDS	9.49	12527	0	0	12527	2102	13865	OK				
NO3 C.HOLD	9.50	6149	0	0	6149	526	11060	OK				
NO3&4 C.HOLDS	9.51	8949	0	0	8949	2038	13642	OK				
NO4 C.HOLD	9.52	2800	0	0	2800	0	6241	OK				
NO4&5 C.HOLDS	9.53	8947	0	0	8947	2061	13639	OK				
NO5 C.HOLD	9.54	6147	0	0	6147	550	12632	OK				
NO5&6 C.HOLDS	9.54	8474	0	0	8474	1930	11470	OK				
NO6 C.HOLD	9.55	2327	0	0	2327	0	4073	OK				
1			I	I								

MULTILOAD -

B- GRAIN STABILITY CALCULATIONS, SEA GOING CRITERION

NATIONAL CARGO BUREAU, INC.

GRAIN STABILITY CALCULATION

			YEAR BUILT A	r
		NET TONNAGE	OFFICIAL NO.	
GENT				
RAIN LOADING	BOOKLET APPROVED BY			
RAWING NO.		DATE OF APPROVAL		
PPLICABLE REG	ULATIONS			
DDENDUM FOR U	NTRIMMED ENDS APPROV	ED BY		
RAWING NO.		DATE OF APPROVAL		
OADING PORT				
UNKEDING DODT	<u>د</u>			
CAREKING PURI	J			
ISCHARGE PORT				
TEAMING DISTA	NCE	MILES PER DAY	TIME	
AILY CONSUMPT	ION: FUEL	DIESEL	WATER	
	DISDIACEMENT	DEADUEIGUT	רסת דיד	FDFFBOND
INTER	38544	30004	10.199	4.445
UMMER	39440	30899	10.416	4.228
ROPICAL	40337	31796	10.633	4.011
RESH WATER AL	LOWANCE 0.239 TPC (A	AT SUMMER DRAFT) 41.297		
HIS IS TO CER	TIFY THAT:			
1. THIS CA	ALCULATION IS PREPAR	ED IN ACCORDANCE WITH THE R	EQUIREMENTS	
OF THE	VESSEL'S GRAIN LOAD	ING BOOKLET AND THE APPLIC	ABLE GRAIN	
REGULA	TIONS			
2. THE STA	ABILITY OF THE VESSE	L WILL BE MAINTAINED THROUG	HOUT THE	
VOYAGE	IN ACCORDANCE WITH	THIS CALCULATION.		
ALCULATION PR	EPARED BY:			
				MASTER
		EX	AMINED:	
			N.C	.B. SURVEYOR

NOTE: ORIGINAL STABILITY CALCULATION AND GRAIN ARRANGEMENT PLAN TO BE SUMITTED TO THE N.C.B. SURVEYOR. ALL TONNAGES USED IN THESE CALCULATIONS SHALL BE SHOWN IN THE SAME UNITS AS USED IN THE GRAIN LOADING BOOKLET.

COMPARTMENT	CARGO	S.F.	GRAIN	CUBICS			
NAME	TYPE	(M^3/MT)	100%	ACTUAL	WEIGHT	V.C.G.	MOMENT
NO1 C.HOLD	GRAIN1	1.203	4663	2888	2400	5.90	14160
NO2 C.HOLD	GRAIN1	1.203	7675	7675	6378	8.43	53762
NO3 C.HOLD	GRAIN1	1.203	7400	7400	6149	8.49	52205
NO4 C.HOLD	GRAIN1	1.203	6242	3370	2800	5.38	15075
NO5 C.HOLD	GRAIN1	1.203	7397	7397	6147	8.49	52184
NO6 C.HOLD	GRAIN1	1.203	5258	2800	2327	5.74	13363
NO1 ON HATCH			1201	0	0	0.00	0
NO2 ON HATCH			2869	0	0	0.00	0
NO3 ON HATCH			2869	0	0	0.00	0
NO4 ON HATCH			2504	0	0	0.00	0
NO5 ON HATCH			2869	0	0	0.00	0
NO6 ON HATCH			1997	0	0	0.00	0

SHIP	AND	CARGO	CALCULATION

THIS CALCULATION IS	CARGO TOTALS	26200	7.66	200748
PREPARED IN:	LIGHT SHIP	8541	10.10	86270
[] ENGLISH UNITS	STORES	0	0.00	0
[x] METRIC UNITS				
	SHIP AND CARGO TOTALS	34741		287018

CARGO PLAN: INDICATE HOLDS, TWEEN DECKS, ENGINE SPACES, FITTINGS, STOWAGE,

TONNAGES, ETC.

PART I

FUEL AND WATER CALCULATION

PART II

IN THIS PART YOU CAN EXAMINE DEPARTURE, INTERMEDIATE OR ARRIVAL CONDITION. INTERMEDIATE SECTION IS REQUIRED TO BE COMPLETED IF ARRIVAL SECTION SHOWS IS JUST PRIOR TO BALLASTING WHICH INCLUDES THE EFFECT OF FREE SURFACE BUT NOT EFFECT OF WEIGHT OF THE BALLAST WHICH IS TO BE TAKEN ABOARD.

c

TANK	TYPE	WEIGHT	V.C.G.	MOMENT	F.S.
	LIQUID				MOMENT
NO1 HFO T	F.O.	40	3.	120	100
NO2 HFO T P	F.O.	150	.37	56	1381
NO2 HFO T S	F.O.	150	.37	56	1381
NO3 HFO T P	F.O.	10	.05	1	296
NO3 HFO T S	F.O.	40	.21	8	296
NO4 HFO P(LS)	F.O.	95	.86	82	169
NO4 HFO S(LS)	F.O.	95	.86	82	169
NO2 HFO SETTL	F.O.	15	11.61	174	21
NO2 HFO SERV	F.O.	15	11.66	175	18
NO1 HFO SERV	F.O.	7	11.33	79	11
NO1 HFO SETTL	F.O.	7	11.26	79	10
NO1 HFO OVRFL	F.O.	2	13.85	28	9
MDO STOR P	D.O.	55	.81	45	130
MDO STOR S	D.O.	55	.81	45	130
MDO SERV	D.O.	11	8.41	92	5
MDO SETTL P	D.O.	9	7.74	70	15
FWT P	F.W.	45	12.28	552	36
FWT S	F.W.	100	12.41	1241	92
DISTILL W TK	F.W.	5	11.16	56	16
COOLING	F.W.	20	4.3	86	156
F.P.TK	B.W.	2	.05		44
NO1 BWT P	B.W.	4	.02		487
NO1 BWT S	B.W.	4	.02		487
NO2 DBWT P	B.W.	3	.01		98
NO2 DBWT S	B.W.	3	.01		98
NO2 TBWT P	B.W.	1	10.78	11	
NO2 TBWT S	B.W.	1	10.78	11	
NO3 DBWT P	B.W.	5	.01		1988
NO3 DBWT S	B.W.	5	.01		1988
NO3 TBWT P	B.W.	1	10.78	11	
NO3 TBWT S	B.W.	1	10.78	11	
NO4 BWT P	B.W.	5	.12	1	3
NO4 BWT S	B.W.	5	.12	1	3
NO5 DBWT P	B.W.	4	.02		81
NO5 DBWT S	B.W.	4	.02		81

Continue ...

FUEL AND WATER CALCULATION

PART II (continued)

TANK	TYPE	WEIGHT	V.C.G.	MOMENT	F.S.
	LIQUID				MOMENT
NO5 TBWT P	B.W.	1	10.78	11	
NO5 TBWT S	B.W.	1	10.78	11	
NO6 BWT P	B.W.	4	.04		136
NO6 BWT S	B.W.	4	.04		136
NO7 DBWT P	B.W.	3	.01		487
NO7 DBWT S	B.W.	3	.01		487
APT	B.W.	1	7.05	7	25

11072	3200	991	TOTALS LIQUIDS
	287018	34741	SHIP AND CARGO
	290217	35732	GRAND TOTALS DISPLACEMENT
		8.122	KG
		0.310	FREE SURFACE CORR. (+)
		9.946	KM
		8.432	KGv
		1.515	GM
		0.300	REQUIRED MINIMUM GM

NOTES

(1) FREE SURFACE CORR. = <u>SUM OF FREE SURFACE INERTIA MOMENTS</u> DISPLACEMENT

(THIS CORRECTION MUST BE APPLIED TO ALL SHIPS.)

PART III					
		VOLUMETRIC		GRAIN	
	STOW-	GRAIN	HEELING	S.F.	HEELING
COMPARTMENT	AGE	DEPTH	MOMENT	(M^3/MT)	MOMENT
NAME	(1)	(M)	(M^4)	(2)	(M.TM.)
NO1 C.HOLD	PF	8.16	4777	1.203	3969
NO2 C.HOLD	PF	14.50	374	1.203	311
NO3 C.HOLD	PF	14.50	374	1.203	311
NO4 C.HOLD	PF	7.11	7945	1.203	6601
NO5 C.HOLD	PF	14.50	374	1.203	311
NO6 C.HOLD	PF	7.49	6482	1.203	5386
NO1 ON HATCH		0.00	0		0
NO2 ON HATCH		0.00	0		0
NO3 ON HATCH		0.00	0		0
NO4 ON HATCH		0.00	0		0
NO5 ON HATCH		0.00	0		0
NO6 ON HATCH		0.00	0		0
			20325		16889

STABILITY SUMMARY

(1) UNDER STOWAGE INDICATE "F" FOR FILLED COMPARTMENTS,

- 'F-UT' FOR FILLED COMPARTMENTS UNTRIMMED,
- 'PF' FOR PARTLY FILLED COMPARTMENTS,
- 'SEC' FOR SECURED OR OVERSTOWED COMPARTMENTS.
- (2) THE STOWAGE FACTOR USED IN PART III SHALL NOT EXCEED THE VOLUME PER UNIT WEIGHT (TEST WEIGHT) OF THE GRAIN. IF STOWAGE FACTOR IS SAME IN ALL COMPARTMENTS, DIVIDE TOTAL VOLUMETRIC HEELING MOMENT BY STOWAGE FACTOR OR MULTIPLY BY DENSITY TO OBTAIN GRAIN HEELING MOMENT. IF STOWAGE FACTOR VARIES, OBTAIN GRAIN HEELING MOMENT FOR EACH COMPARTMENT.

FOR VESSELS APPROVED UNDER:

REGULATION 4, CHAPTER VI, SOLAS 1974 or REGULATION 4, IMCO RESOLUTION A.264(VIII),SOLAS 1960 or REGULATION 4, IMCO RESOLUTION A.184(VI),SOLAS 1960

DISPLACEMENT (MT)	35732
KGv (M)	8.432
TOTAL GRAIN HEELING MOMENT (MT-M)	16889
MAXIMUM ALLOWABLE HEELING MOMENT (MT-M)	12913

GRAIN STABILITY SHELTERED WATER CCRITERION

INSERT TO NATIONAL CARGO BUREAU GRAIN STABILITY CALCULATION FORM

To be completed when a vessel, carrying grain in bulk and engaged on a voyage on the island or coastal waters of the United States, elects and is entitled to utilize the provisions of 46 CFR 172.030.

NOTES

						PORT	:			
		2	3	4	5	6	7	8	9	10
Slack Hold No	L	L w/o C.L.	L w/ C.L.	Col.3 div'd by 4	Col.2 plus Col.4	в	В^З	Col.5 x Col.7 x 0.0661	SF	Col.8 div'd by Col.9
1	19.20	19.20	0	0	19.20	20.00	8000.00	10152.96	1.203	8439.70
4	23.20	23.20	0	0	23.20	20.00	8000.00	12268.16	1.203	10197.97
6	20.00	20.00	0	0	20.00	20.00	8000.00	10576.00	1.203	8791.35
									SUM Col 10	27429.0

= Length of Hold = Breadth of Grain Surface

В C.L. = Centerline Division

S.F. = Stowage Factor

L

ſ

1. All dimensions must be in feet, long tons and ft^3/LT or alternatively in meters, tonnes and m^3/tonne. 2. Where C.L. division halves the Breadth, Cols 2 through 5 $\,$

_ Date _

adjusts the calculation for this reduction.

Displ.	=	35732	r =	Freeboard	=		5.131	Reg'd	GM	-	SUM x F	-
GM (corr)	=	1.515	-	Beam			23.70	neg a			Displ.	
			r = (.217				Reg'd	GM	=	27429.0 x 1.238	=
Mean Drf.	=	9.51	If r	< 0.268 then	F =	0.268	/ r	-			35732	
Freeboard	=	5.131	other	rwise F = 1				Req'd	GM	= 0.	950	
Beam	=	23.70	F = 1	1.238				Avail	GM	= 1.	515	

Examined

N.C.B. Surveyor

Master

10.5.2- DEPARTURE CONDITION WITH FULL BUNKERS AND BALLASTED

A- WEIGHT DISTRIBUTION, INTACT STABILITY PARAMETERS

						05 - 03	3 - 2	018 10:30:	01 Page:	1
Seaw	ater Density :	roject N.O. t 1.025 MT/M^3	o Lom	e departure Stren	ballasted gth Conditi	on : SE	A GO	ING		
	-				-					
				DISPLACEMEN	NT SUMMARY					
	ITEM	WEIG	HT	L.C.G.	V.C.G.	T.C.	G.	F.S.MT.	GRAIN MT	
		(T)	(M)	(M)	(M)		(T-M)	(T-M)	
	GRAIN BULK CARGO	2620	0.00	98.68	7.66		0.00		16889	
	TOTAL C A R G O	2620	0.00	98.68	7.66		0.00		16889	
	FUEL OIL	62	26.00	72.84	1.50	-	0.74	3863		
	DIESEL OIL	13	0.00	29.33	1.94	-	1.06	280		
	FDESH WATED	12	0.00	1 10	11 39		1 90	200		
	WATER BALLAST	378	2.60	74.15	5.10		0.00	2375		
	MISC ITEMS		0.00	0.00	0.00		0.00	0		
	DEADWEIGHT	3090	8.60	94.32	7.22	-	0.03	6817	16889	
	LIGHTSHIP	854	0.71	81.46	10.10		0.00			
	DISPLACEMEN	NT 3944	9.31	91.54	7.84	-	0.02	6817	16889	
Dm	oft of ICE -	10 40 M	DRAF	15 (tm/cm) =	571	2	IM	SIABI	10.01	м
LC	alt at Ltr =	91.54 M	TRT	(cm/cm) =	-1.	01 M	KG	(solid)=	7.84	м
LC	G from AP =	91.54 M	LCF	from AP =	86.	54 M	F	S Cor =	0.17	м
AI	R DRAFT =	32.55 M	Dra	ft Fwd =	9.	89 M	GM	(solid)=	2.17	м
PR	OPELLER IMMR=	184.1 %	Dra	ft Aft =	10.	89 M	KG	(fluid)=	8.02	м
AN	GLE OF HEEL =	Stbd 0.67 °	Dra	ft Amid =	10.	39 M	GM	(fluid)=	2.00	м
							_			
	MAXIM	UM PERMITTED	= KG(KG' F	(SOLID) + F S FOR INTACT ST	ABILITY (A7	49-WEA1	/ THER)	= 8.02 M = 9.13 M		
	MINIMUM REQUIR	ED GM' FOR DA	M. 51	TAB. (SOLAS (CH. II-1,RE0	G.25 &	REG.2	7 OF ICLL) =	= 0.86 M	
	ACTUA	L GRAIN HEELI	NG MO	MENT				= 16889	тм	
	ALLOW	ABLE GRAIN HE	ELING	MOMENT (SOI	AS 74)			= 18412	ТМ	
	MAX S	.F. PERCENTAG	E TO	ALLOWABLE =	78 % AT FP	AME 35				
	MAX B	.M. PERCENTAG	E TO	ALLOWABLE =	83 % AT FF	AME 178	в			
	MULTILOA	D								

						05 - 0	3 - 2018	3 10.	30•01 P	arra · 2
						00 0	.5 2010	. 10.	50.01 10	.yc. 2
Seawater Density	rojec 1 025	t N.O. to MT/M^3	D Lome de	epartur Str	e ballasted	tion • 9	TA GOIN	-		
Seawater Density .	1.025	мі/н 5		501	engen conur		JEA GOING	,		
			DE	NUMETCH	T BREAKDOW	N				
GRAIN CARGO IN B	III.K		DE	10/12101	I DREAKDOW					
ORATH CARGO IN D		ADE OF	8.0	•	UFICHT	VCC	LCC	TCC	CONTR	СИМ
CARGO SPACE		CARGO	CF/MT	тот	in Tonnes	(M)	(M)	(M)	COMD.	(T-M)
NOL C HOLD	CPAT	N1	42 500	62	2400.00	5 90	157 11	0.0	OSLACK	3050
NO2 C HOLD	GRAI	111	42.500	100	6377 50	8 43	134 48	0.0	0 UNTEM	311
NO3 C HOLD	GRAT	11	42.500	100	6149 00	8 49	108.66	0.0	O UNTEM	311
NO4 C.HOLD	GRAT	N1	42.500	54	2800.00	5.38	83.80	0.0	0 SLACK	6601
NO5 C.HOLD	GRAT	N1	42.500	100	6146.50	8.49	59.05	0.0	0 UNTRM	311
NO6 C.HOLD	GRAI	IN1	42.500	53	2327.00	5.74	36.46	0.0	0 SLACK	5386
ΤΟΤΑ	LG	RAIN			26200.00	7.66	98.68	0.0	0	16889
		S.G.	8		WEIGHT	VCG	I	CG	TCG	F.S.M.
- OTHER ITEMS -		T/M^3	TOT		in Tonnes	(M)	((M)	(M)	(T-M)
FUEL OIL T	ANI	KS								
NO1 HFO T		0.980		20	40.00	3	.00 1	68.57	-0.05	100
NO2 HFO T P		0.980		42	150.00	0	.37	83.80	5.50	1381
NO2 HFO T S		0.980		42	150.00	0	.37	83.80	-5.50	1381
NO3 HFO T P		0.980		6	10.00	0	.05	63.80	4.00	296
NO3 HFO T S		0.980		23	40.00	0	.21	63.80	-4.00	296
NO4 HFO P(LS)		0.980		95	95.00	0	.86	50.60	4.00	169
NO4 HFO S(LS)		0.980		95	95.00	0	.86	50.60	-4.00	169
NO2 HFO SETTL		0.980		47	15.00	11	.61	15.81	-7.87	21
NO2 HFO SERV		0.980		50	15.00	11	.66	13.41	-7.76	18
NOI HFO SERV		0.980		26	7.00	11	.33	11.02	-7.38	11
NOI HFO SETTL		0.980		22	7.00	11	.26	8.24	-7.16	10
NOI HFO OVRFL		0.980	' <u> </u>	1/	626.00	13	.05 1	72 04	-2.00	2062
IOIALI	. 0 5	1 01	1		020.00	lined F	SM der	12.04	-0.74	JOOJ
DIESEL OTT	ти	ANKS			user onder	cu f	uer uer	.56CB 48	C OI MGAL	andin 1 OF1
MDO STOR P		0.850		78	55.00	0	.81	32.42	-3.28	130
MDO STOR S		0.850		78	55.00	0	.81	32.42	3.28	130
MDO SERV		0.850		55	11.00	8	.41	10.39	-6.57	5
MDO SETTL P		0.850		22	9.00	7	.74	14.70	-7.24	15
TOTAL DI	ES	EL O	IL		130.00	1	.94	29.33	-1.06	280
				1	Note: Under	lined F	SM der	notes us	se of maxi	mum FSM
MULTILOA	D									

83

05 - 03 - 2018 10:30:01 Page: 3 project N.O. to Lome departure ballasted Seawater Density : 1.025 MT/M'3 Strength Condition : SEA GOING - OTHER ITEMS - T.M'3 WEIGHT VCG LOG TCG F.S.M. LUB 0IL TANKS 0.900 0 0.00 0.00 25.00 4.03 C NOL CYL 0 STR 0.900 0 0.00 0.00 25.00 4.03 C NVE LO STR 0.900 0 0.00 0.00 13.43 7.05 0 M/E LO STR 0.900 0 0.00 0.00 1.09 6.23 0 G/E LO STR 0.900 0 0.00								
Project N.O. to Lome departure hallasted Seawater Density : 1.025 MT/M'3 Strength Condition : SEA GOING - OTHER ITEMS - T/M'3 TOT in Tonnes (M) (M) (T-M) L U B O I L TANKS 0.900 0 0.00 0.00 25.00 4.03 C NO1 CYL 0 STR 0.900 0 0.00 0.00 25.00 1.00 C NVE LO STR 0.900 0 0.00 0.00 15.62 7.26 C MVE LO STR 0.900 0 0.00 0.00 13.43 7.05 0 G/E LO STR 0.900 0 0.00 0.00 1.00 6.23 0 M/E LO STR 0.900 0 0.00 0.00 1.00 0 0.00					05 - 03 -	2018 10	:30:01 P	age: 3
- OTHER ITEMS - S.G. T/M*3 NOI TOT In Tonnes VCG LCG TCG F.S.H. (T-H) L U B O I L TANKS 0.900 0 0.00 0.00 25.00 4.03 0 NO1 CX 0 STR 0.900 0 0.00 0.00 25.00 4.03 0 NO2 CYL 0 STR 0.900 0 0.00 0.00 15.62 7.26 0 N/E LO STR 0.900 0 0.00 0.00 11.08 6.23 0 G/E LO STR 0.900 0 0.00 0.00 1.09 6.23 0 M/E LO STR 0.900 0 0.00 0.00 1.00 0 0.00	Seawater Density :	project N.O. to 1.025 MT/M^3	Lome depar	ture ballasted Strength Condit	ion : SEA (GOING		
OTHER ITEMS - T/M*3 TOT INTON VCG LCG TCG F.S.M. (M) L U B O I L TANKS 0.900 0 0.00 0.00 25.00 4.03 CC NO1 CXL 0 STR 0.900 0 0.00 0.00 25.00 4.03 CC NO2 CXL 0 STR 0.900 0 0.00 0.00 15.82 7.26 CC M/E LO SET 0.900 0 0.00 0.00 11.05 6.23 CC G/E LO SET 0.900 0 0.00 0.00 11.05 6.23 CC G/E LO SET 0.900 0 0.00 0.00 10.00 10.00 11.05 6.23 CC T O T A L L U B 0 I L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.00 15.87 5.87 5.87 5.87								
- OTHER ITEMS - T/M*3 TOT in Tonnes (M) (M) (M) (T-M) L U B O I L TANKS 0.900 0 0.00 0.00 25.00 4.03 0 NOL CL O STR 0.900 0 0.00 0.00 25.00 4.03 0 NO2 CYL O STR 0.900 0 0.00 0.00 15.82 7.26 0 M/E LO STR 0.900 0 0.00 0.00 11.09 6.23 0 G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 0 G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 0 G/E LO STR 0.900 0 0.00 0.00 10.00 0		S.G.	8	WEIGHT	VCG	LCG	TCG	F.S.M.
LUB OIL TANKS 0.900 0 0.00 0.00 25.00 4.03 0 NO2 CYLOSTR 0.900 0 0.00 0.00 25.00 4.03 0 NO2 CYLOSTR 0.900 0 0.00 0.00 25.00 4.03 0 NO2 CYLOSTR 0.900 0 0.00 0.00 15.82 7.26 0 M/E LOSTR 0.900 0 0.00 0.00 11.09 6.23 0 G/E LOSTR 0.900 0 0.00 0.00 11.09 6.23 0 TOTAL LUBOIL 0.900 0 0.00 0.00 0.00 0 0.00 0 TOTAL LUBOIL 0.900 0 0.00 0.00 0.00 0 0.00 0 <th>- OTHER ITEMS -</th> <th>T/M^3</th> <th>TOT</th> <th>in Tonnes</th> <th>(M)</th> <th>(M)</th> <th>(M)</th> <th>(T-M)</th>	- OTHER ITEMS -	T/M^3	TOT	in Tonnes	(M)	(M)	(M)	(T-M)
NO1 CYL O STR 0.900 0 0.00 0.00 25.00 4.03 0.00 NO2 CYL O STR 0.900 0 0.00 0.00 25.00 1.00 0 M/E LO STR 0.900 0 0.00 0.00 13.43 7.05 0 M/E LO SET 0.900 0 0.00 0.00 11.09 6.23 0 G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 0 G/E LO STR 0.900 0 0.00 0.00 9.03 6.65 0 G/E LO STR 0.900 0 0.00 0.00 0.00 0.00 0.00 T O T A L L U B 0 I L 0.00 0.00 0.00 0.00 0.00 0.00 T O T A L L U B 0 I L 0.00 12.41 0.94 -6.18 92 DISTILL W TK 1.000 75 20.00 4.30 6.53 0.00 156 T O T	LUB OIL TA	NKS					1	
NO2 CYL O STR 0.900 0 0.00 0.00 25.00 1.00 0 M/E LO STR 0.900 0 0.00 0.00 15.82 7.26 0 M/E LO STR 0.900 0 0.00 0.00 11.09 6.23 0 G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 0 M/E LO STR 0.900 0 0.00 0.00 11.09 6.23 0 G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 0 M/E LO STMP 0.900 0 0.00 0.00 0.00 0.00 0 0 T O T A L L U B O I L 0.00 0.00 0.00 0 0 0 FW F 1.000 59 45.00 12.28 -1.09 5.67 36 FWT S 1.000 11 5.00 11.16 2.43 6.07 16 COOLING	NO1 CYL O STR	0.900	0	0.00	0.00	25.00	4.03	0
N/E LO STR 0.900 0 0.00 0.00 15.82 7.26 0 M/E LO STR 0.900 0 0.00 0.00 13.43 7.05 0 G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 0 G/E LO STR 0.900 0 0.00 0.00 10.00 56.23 0 M/E LO SUMP 0.900 0 0.00 0.00 11.09 6.23 0 T O T A L U B <o i="" l<="" td=""> 0.00 0.00 0.00 0.00 0.00 <t< td=""><th>NO2 CYL O STR</th><td>0.900</td><td>0</td><td>0.00</td><td>0.00</td><td>25.00</td><td>1.00</td><td>0</td></t<></o>	NO2 CYL O STR	0.900	0	0.00	0.00	25.00	1.00	0
M/E LO SET 0.900 0 0.00 0.00 13.43 7.05 0 G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 0 G/E LO STR 0.900 0 0.00 0.00 9.00 9.00 6.65 0 M/E LO SUMP 0.900 0 0.00 <t< td=""><th>M/E LO STR</th><td>0.900</td><td>0</td><td>0.00</td><td>0.00</td><td>15.82</td><td>7.26</td><td>0</td></t<>	M/E LO STR	0.900	0	0.00	0.00	15.82	7.26	0
G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 0 G/E LO STT 0.900 0 0.00 0.00 9.03 6.65 0 M/E LO SUMP 0.500 0 0.00 0.00 11.09 6.23 0 T O T A L L U B 0 I L 0.00 0.00 0.00 0.00 0 F R E S H W A T E R T A N K S Inderlined FSM denotes use of maximum FSM FWT P 1.000 59 45.00 12.28 -1.09 5.87 36 FWT S 1.000 68 100.00 12.41 0.94 -6.18 52 DISTILL W TK 1.000 75 20.00 4.30 6.53 0.00 156 COOLING 1.000 75 20.00 4.30 6.53 0.00 156 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 299	M/E LO SET	0.900	0	0.00	0.00	13.43	7.05	0
G/E LO SET 0.900 0 0.00 0.00 9.03 6.65 0 M/E LO SUMP 0.900 0 0.00	G/E LO STR	0.900	0	0.00	0.00	11.09	6.23	0
M/E LO SUMP 0.900 0 0.00 0.00 18.20 0.00 0.00 TOTAL LUBOIL 0.00 10.00 11.00	G/E LO SET	0.900	0	0.00	0.00	9.03	6.65	0
TOTAL LUBOIL 0.00 12.28 -1.09 5.87 3.6 FWT S 1.000 11 5.00 11.16 2.43 6.07 1.6 0.00 15.87 0.00 15.87 0.00 1.5 0.00 1.00 1.10 -1.90 2.98 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	M/E LO SUMP	0.900	0	0.00	0.00	18.20	0.00	0
Note: Underlined FSM denotes use of maximum FSM FRESH WATER TANKS 1.000 59 45.00 12.28 -1.09 5.87 36 FWT S 1.000 68 100.00 12.41 0.94 -6.18 92 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 14 COOLING 1.000 75 20.00 4.30 6.53 0.00 156 T O T A L FRESH WATER 170.00 11.38 1.10 -1.90 295 Note: Underlined FSM denotes use of maximum FSM	TOTAL	LUB OIL		0.00	0.00	0.00	0.00	0
FRESH WATER TANKS FWT P 1.000 59 45.00 12.28 -1.09 5.87 36 FWT S 1.000 68 100.00 12.41 0.94 -6.18 92 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 16 COOLING 1.000 75 20.00 4.30 6.53 0.00 156 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 295				Note: Under	lined FSM	denotes (use of maxi	mum FSM
FWT P 1.000 59 45.00 12.28 -1.09 5.87 36 FWT S 1.000 68 100.00 12.41 0.94 -6.18 92 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 16 COOLING 1.000 75 20.00 4.30 6.53 0.00 156 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 295 Note: Underlined FSM denotes use of maximum FSM	FRESH WATE	CR TANKS						
FWT S 1.000 68 100.00 12.41 0.94 -6.18 92 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 16 COOLING 1.000 75 20.00 4.30 6.53 0.00 156 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 295 Note: Underlined FSM denotes use of maximum FSM	FWT P	1.000	59	45.00	12.28	-1.09	5.87	36
DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 16 COOLING 1.000 75 20.00 4.30 6.53 0.00 156 T O T A L FRESH WATER 170.00 11.38 1.10 -1.90 295 Note: Underlined FSM denotes use of maximum FSM	FWT S	1.000	68	100.00	12.41	0.94	-6.18	92
CODLING 1.000 75 20.00 4.30 6.53 0.00 156 T O T A L FRESH WATER 170.00 11.38 1.10 -1.90 295 Note: Underlined FSM denotes use of maximum FSM	DISTILL W TK	1.000	11	5.00	11.16	2.43	6.07	16
Note: Underlined FSM denotes use of maximum FSM	COOLING	1.000	75 E D	20.00	4.30	6.53	0.00	156
Note: Underlined FSM denotes use of maximum FSM	IOIAL PR	KESH WAI	ER	170.00	11.38	1.10	-1.90	299
		-						

				05 - 03 -	2018 10:	30:01 Pr	age: 4
	ot N O to	Long donar	ture ballagted				
Seawater Density : 1.025 MT/M^3 Strength Condition : SEA GOING							
	S.G.	*	WEIGHT	VCG	LCG	TCG	F.S.M.
- OTHER ITEMS -	T/M^3	TOT	in Tonnes	(M)	(M)	(M)	(T-M)
BALLAST WATE	R TAN	KS					
F.P.TK	1.025	0	2.00	0.05	171.63	-0.01	44
NO1 BWT P	1.025	0	4.00	0.02	155.87	4.07	487
NO1 BWT S	1.025	0	4.00	0.02	155.87	-4.07	487
NO2 DBWT P	1.025	1	3.00	0.01	134.40	8.70	98
NO2 DBWT S	1.025	1	3.00	0.01	134.40	-8.70	98
NO2 TBWT P	1.025	1	1.00	10.78	135.00	11.73	0
NO2 TBWT S	1.025	1	1.00	10.78	135.00	-11.73	0
NO3 DBWT P	1.025	100	552.20	1.04	108.60	6.72	0
NO3 DBWT S	1.025	100	552.20	1.04	108.60	-6.72	0
NO3 TBWT P	1.025	1	1.00	10.78	108.60	11.73	0
NO3 TBWT S	1.025	1	1.00	10.78	108.60	-11.73	0
NO4 BWT P	1.025	100	634.90	7.44	83.80	10.92	0
NO4 BWT S	1.025	100	634.90	7.44	83.80	-10.92	0
NO5 DBWT P	1.025	2	4.00	0.02	61.59	8.58	81
NO5 DBWT S	1.025	2	4.00	0.02	61.59	-8.58	81
NO5 TBWT P	1.025	1	1.00	10.78	59.00	11.71	0
NO5 TBWT S	1.025	1	1.00	10.78	59.00	-11.71	0
NO6 BWT P	1.025	100	685.70	6.30	36.32	9.27	0
NO6 BWT S	1.025	100	685.70	6.30	36.32	-9.27	0
NO7 DBWT P	1.025	1	3.00	0.01	135.00	4.00	487
NO7 DBWT S	1.025	1	3.00	0.01	135.00	-4.00	487
APT	1.025	0	1.00	7.05	4.99	0.00	25
NO4 C.HOLD/WB	1.025	0	0.00	0.00	83.80	0.00	0
TOTAL BALLA	ST WA	TER	3782.60	5.10	74.15	0.00	2375
			Note: <u>Under</u>	lined FSM	denotes u	se of maxim	mum FSM
MULTILOAD							

	: 1.025 MI/M"5	Strength C	ondition : SEA G	01NG		
	COND.	ITION'S KG' = 8.	.02 METERS			
	CROSS CURVES KG = 0.00 METERS					
	RIGHTING ARM $G'Z = GZ - GG' SIN (\theta)$					
θ	SIN(0)	GZ	GG' SIN (0)	G'Z		
10	0 0 174	1 749	1 392	0.357		
20.	0.342	3.518	2.742	0.776		
30.	0.500	5.124	4.009	1.115		
40.	0.643	6.580	5.153	1.426		
50.	0.766	7,690	6.141	1.549		
60.	0.866	8.402	6.943	1.459		
70.	0.940	8.719	7.534	1.185		
			1			
STABILI	TY CRITERIA (A749)	ACTU	UAL VALUE	REQUIRED		
AREA FROM 0 T	0 30 DEG		0.295 M RAD	0.055 M RA		
AREA FROM 0 T	0 40.0 DEG		0.519 M RAD	0.09 M RA		
AREA FROM 30	TO 40.0 DEG		0.223 M RAD	0.03 M RA		
RIGHTING ARM	AT 30 DEG		1.115 M	0.2 M		
MAX RIGHTING	ARM	1.56	54 M AT 49 DEG	AT ANGLE >=25 DE		
INIT METACEN	TRIC HEIGHT		2.00 M	0.15 M		
GRAIN S	TAB.CRIT. (SOLAS74)	ACTU	UAL VALUE	REQUIRED		
INIT METACEN	TRIC HEIGHT		2.00 M	0.30 1		
ANGLE OF HEEL			11.2 DEG	12 DEG. or DK EDG		
NET ADEA HD T	O ONY (40 DEC)		0 261 M DAD	IMMERS ANG = 19.5 DE0		
	I.M.O	WEATHER CRITERIA	Res.A.749	. 10 50 550		
Th (DE)		LOR IMPLESION		: 19.50 DEG		
Th(DE)	JE) ANGLE OF OPPER DECK IMMERSION :					
Th(DE) Th(DE)*.80 Th(F)	ANGLE OF FLOODING	-		: 15.60 DEG		
Th (DE) Th (DE) *.80 Th (F)	ANGLE OF FLOODING	G ARFA (SHIP UPPIG	HT)	: 15.60 DEG : 42.36 DEG : 1670 M2		
Th (DE) Th (DE) * . 80 Th (F) A H	ANGLE OF FLOODING LATERAL WINDAGE J	G AREA (SHIP UPRIG VER FROM MID DRA	HT) FT	: 15.60 DEG : 42.36 DEG : 1670 M2 : 11.924 M		
Th (DE) Th (DE) * .80 Th (F) A H DW	ANGLE OF FLOODING LATERAL WINDAGE J WIND PRESSURE LEV STEADY WIND HEFT.	G AREA (SHIP UPRIG VER FROM MID DRAM ING ARM	HT) FT	: 15.60 DEG : 42.36 DEG : 1670 M2 : 11.924 M : 0.026 M		
Th (DE) Th (DE) *.80 Th (F) A H DW Th (0)	ANGLE OF FLOODING LATERAL WINDAGE J WIND PRESSURE LET STEADY WIND HEEL: RESULTANT ANGLE (G AREA (SHIP UPRIG VER FROM MID DRA ING ARM DF EOULLIBRIUM	HT) FT	: 15.60 DEG : 42.36 DEG : 1670 M2 : 11.924 M : 0.026 M : 0.761 DEG		
Th (DE) Th (DE) *.80 Th (F) A H DW Th (0) 1w2=1.5*1w1	ANGLE OF OFPER D ANGLE OF FLOODING LATERAL WINDAGE J WIND PRESSURE LEY STEADY WIND HEEL: RESULTANT ANGLE (G AREA (SHIP UPRIG VER FROM MID DRA ING ARM DF EQUILIBRIUM	HT) FT	: 15.60 DEG : 42.36 DEG : 1670 M2 : 11.924 M : 0.026 M : 0.761 DEG : 0.039 M		
Th (DE) Th (DE) *.80 Th (F) A H DW Th (0) 1w2=1.5*1w1 Th (1)	ANGLE OF OFPER D ANGLE OF FLOODIN LATERAL WINDAGE J WIND PRESSURE LEY STEADY WIND HEEL: RESULTANT ANGLE (ANGLE OF WINDWAR	G AREA (SHIP UPRIG VER FROM MID DRA ING ARM OF EQUILIBRIUM D ROLL DUE TO WA	HT) FT VE	: 15.60 DEG : 42.36 DEG : 1670 M2 : 11.924 M : 0.026 M : 0.761 DEG : 0.039 M : 21.57 DEG		
Th (DE) Th (DE) *.80 Th (F) A H DW Th (0) 1w2=1.5*1w1 Th (1) Th (c)	ANGLE OF OFPER D ANGLE OF FLOODIN LATERAL WINDAGE J WIND PRESSURE LEY STEADY WIND HEEL: RESULTANT ANGLE (ANGLE OF WINDWARI ANGLE OF ZD. INTI	G AREA (SHIP UPRIG VER FROM MID DRA ING ARM OF EQUILIBRIUM D ROLL DUE TO WA' ERCEPT OF G2-cur	HT) FT VE ve WITH 1w2	: 15.60 DEG : 42.36 DEG : 1670 M2 : 11.924 M : 0.026 M : 0.761 DEG : 0.039 M : 21.57 DEG		
Th (DE) Th (DE) *.80 Th (F) A H DW Th (0) 1w2=1.5*1w1 Th (1) Th (2)	ANGLE OF OFPER D ANGLE OF FLOODIN LATERAL WINDAGE J WIND PRESSURE LEV STEADY WIND HEEL: RESULTANT ANGLE (ANGLE OF WINDWARI ANGLE OF ZIND INTH MINIHUM OF Th(F)	G AREA (SHIP UPRIG VER FROM MID DRAI ING ARM OF EQUILIBRIUM D ROLL DUE TO WAY ERCEPT OF GZ-cur or 50 deq or Th	HT) FT VE ve WITH 1w2 (c)	: 15.60 DEG : 42.36 DEG : 1670 M2 : 11.924 M : 0.026 M : 0.761 DEG : 0.039 M : 21.57 DEG : 42 DEG		
Th (DE) Th (DE) *.80 Th (F) A H DW Th (0) 1w2=1.5*1w1 Th (1) Th (2) AREA A	ANGLE OF OFPER D ANGLE OF FLOODIN LATERAL WINDAGE J WIND PRESSURE LEV STEADY WIND HEEL: RESULTANT ANGLE OF ANGLE OF WINDWARI ANGLE OF WINDWARI MINIMUM OF Th (F)	G AREA (SHIP UPRIG VER FROM MID DRAI ING ARM OF EQUILIBRIUM D ROLL DUE TO WAY ERCEPT OF GZ-curv or 50 deg or Th	HT) FT VE ve WITH 1w2 (c)	: 15.60 DEG : 42.36 DEG : 1670 M2 : 11.924 M : 0.026 M : 0.761 DEG : 0.039 M : 21.57 DEG : 42 DEG : 0.151 M RAD		
Th (DE) Th (DE) *.80 Th (F) A H DW Th (0) lw2=1.5*lw1 Th (1) Th (2) AREA A AREA B	ANGLE OF OFPER D ANGLE OF FLOODIN LATERAL WINDAGE J WIND PRESSURE LEV STEADY WIND HEEL: RESULTANT ANGLE (ANGLE OF WINDWARI ANGLE OF 2nd INTH MINIMUM OF Th(F)	G AREA (SHIP UPRIG VER FROM MID DRAI ING ARM OF EQUILIBRIUM D ROLL DUE TO WAY ERCEPT OF GZ-curv or 50 deg or Th	HT) FT VE ve WITH 1w2 (c)	: 15.60 DEG : 42.36 DEG : 1670 M2 : 11.924 M : 0.026 M : 0.761 DEG : 0.039 M : 21.57 DEG : 42 DEG : 0.151 M RAD : 0.554 M RAD		
Th (DE) Th (DE) *.80 Th (F) A H DW Th (0) lw2=1.5*lw1 Th (1) Th (2) AREA A AREA B REQUIREMENTS	ANGLE OF OFPER D ANGLE OF FLOODIN LATERAL WINDAGE J WIND PRESSURE LEV STEADY WIND HEEL: RESULTANT ANGLE (ANGLE OF WINDWARI ANGLE OF 2nd INTH MINIMUM OF Th (F) : 1) Th (0) shoul	G AREA (SHIP UPRIG VER FROM MID DRAI ING ARM OF EQUILIBRIUM D ROLL DUE TO WAY ERCEPT OF G2-cur or 50 deg or Th 1d be less than	HT) FT VE ve WITH 1w2 (c) 16deg or 80% of 3	: 15.60 DEG : 42.36 DEG : 1670 M2 : 11.924 M : 0.026 M : 0.761 DEG : 0.039 M : 21.57 DEG : 42 DEG : 0.151 M RAD : 0.554 M RAD Ch (DE)		

GZ CURVES

DEFLECTIONS (SF & BM)

				05 - 03 - 20	018 11:25:01	Page:
CASE 1	: SE	A GOING				
		Max. All.	. SF (MT)	Max. All.	BM (TxM)	٦
Fram	•	(+)	(-)	Sagging	Hogging	
-	6	1019	-1019	-5097	5097	-
3	5	1733	-1733	-15291	32620	
6	0	3109	-3109	-76453	69317	
9	3	3150	-3129	-109276	86850	
12	2	3109	-3109	-109276	86850	
15	5	3109	-3150	-109276	86850	
18	8	3109	-3109	-42813	38838	
21	3	1600	-1600	-8461	8655	
CASE 2	: 11	HARBOR	SF (MT)	Max 211	RM (TyM)	7
Fram		(+)	(-)	Sagging	Hogging	
	6	1233	-1233	-12915	12640	-
3	5	2803	-2803	-53007	69011	
6	~	4679	-4679	-145607	136086	
	3	4343	-4343	-219429	193191	
12	2	4302	-4302	-219429	193191	
15	5	4720	-4720	-209062	183180	
10	J	4740	-4/20			
18		4811	-4811	-95382	89592	
18 21	8 3	4811 2253	-4811 -2253	-95382 -26697	89592 26269	
18 21 CASE 3	8 3 : FI	4811 2253 COODING CONDITION	-4811 -2253	-95382 -26697	89592 26269	
18 21 CASE 3	8 3 : FI	4811 2253 COODING CONDITION Max. All.	-4811 -2253	-95382 -26697 Max. All.	89592 26269 BM (TxM)	
18 21 CASE 3 Fram	8 3 : FI	4811 2253 COODING CONDITION Max. All. (+)	-4811 -2253 . SF (MT) (-)	-95382 -26697 Max. All. Sagging	BM (TxM) Hogging	
18 21 CASE 3 Fram	8 3 : FI = 6	4811 2253 .00DING CONDITION Max. All. (+) 1060	-4811 -2253 . SF (MT) (-) -1060	-95382 -26697 Max. All. Sagging -6830	BM (TxM) Hogging 6769	
18 21 CASE 3 Fram 3	8 3 : FI 6 5	4811 2253 COODING CONDITION Max. All. (+) 1060 1906	-4811 -2253 . SF (MT) (-) -1060 -2171	-95382 -26697 Max. All. Sagging -6830 -23649	BM (TxM) Hogging 6769 32620	
18 21 CASE 3 Fram 3 6	8 3 : FI 6 5 0	4811 2253 COODING CONDITION Max. All. (+) 1060 1906 3415	-4811 -2253 . SF (MT) (-) -1060 -2171 -4353	-95382 -26697 Max. All. Sagging -6830 -23649 -88746	BM (TxM) Hogging 6769 32620 80530	
18 21 CASE 3 Fram 3 6 9	8 3 : FI € 6 5 0 3	4811 2253 COODING CONDITION Max. All. (+) 1060 1906 3415 3415	-4811 -2253 . SF (MT) (-) -1060 -2171 -4353 -3313	-95382 -26697 Max. All. Sagging -6830 -23649 -88746 -134027	BM (TxM) Hogging 6769 32620 80530 103976	
18 21 CASE 3 Fram 3 6 9 12	8 3 : FI 6 5 0 3 2	4811 2253 COODING CONDITION Max. All. (+) 1060 1906 3415 3415 3415 3364	-4811 -2253 . SF (MT) (-) -1060 -2171 -4353 -3313 -3293	-95382 -26697 Max. All. Sagging -6830 -23649 -88746 -134027 -134027	BM (TxM) Hogging 6769 32620 80530 103976 103976	
18 21 CASE 3 Fram - 3 6 9 12 15	8 3 = FI 6 5 0 3 2 5	4811 2253 COODING CONDITION Max. All. (+) 1060 1906 3415 3415 3415 3415 3464 3822	-4811 -2253 . SF (MT) (-) -1060 -2171 -4353 -3313 -3293 -3394	-95382 -26697 Max. All. Sagging -6830 -23649 -88746 -134027 -134027 -129460	BM (TxM) Hogging 6769 32620 80530 103976 103976 103976	
18 21 CASE 3 Fram - 3 6 9 12 15 18	8 3 = FI 6 5 0 3 2 5 8	4811 2253 COODING CONDITION Max. All. (+) 1060 1906 3415 3415 3415 3364 3822 3364	-4811 -2253 . SF (MT) (-) -1060 -2171 -4353 -3313 -3293 -3394 -3293	-95382 -26697 Max. All. Sagging -6830 -23649 -88746 -134027 -134027 -129460 -54434	BM (TxM) Hogging 6769 32620 80530 103976 103976 103976 49949	

V

		05 - 03 - 2018	10:30:01 Page:	7
	project N.O. to Lome departure	ballasted		
Seawater Density	: 1.025 MT/M^3 Stren	gth Condition : SEA GOING		
+++	S.F. ''' S.F. Max.All	*** B.M B.M.	Max.All	
FRM S.F. =	= = = Bulkhead Correction	(+ HOG, - SAG)	B.M.	FRM
AE 0	· · · · · · · · · · · · · · · · · · ·			0 AE
3 97	' *+		48	30 3
8 76	.*+		83	33 8
11 22 16 -93	' .× ' +*		97	77 11 59 16
19 -233	· +. *		64	43 19
23 -459	· + · *	· · · ·	-36	64 23 24 27
30 -907	' + *	1. A	-400	00 30
35 -1350	'- + * - -		838	38 35
41 -1338	· + . *		-1048	57 37 58 41
45 -1348	' + . *		-1886	66 45
48 -1358 52 -1409	· + · *	-	-2203	38 48 56 52
55 -1458	. + *		-2973	30 55
60 -1539'	+ *		' -3559	98 60
66 -1129 '	. x		-3003	17 66
70 -1002 .'	* +		. ' -4492	27 70
74 -901 . 77 -845.	* * +		-478	72 74 93 77
81 -769. '	* +		-523	75 81
84 -710. '	* +		5407	75 84
93 -376!	*		' -5800	03 93
95 -417.'	* +		. ' -5858	37 95
102 -610.	* +		6129	99 99 90 102
108 -771.	* * +		-6449	55 108
110 -825. 113 -906. '	* +		-6768	32 110 34 113
117 -1014. '	* +		. ' -7065	56 117
122 -1110!	* - *		' -7477	77 122 36 124
128 -626. '	* +		-7852	28 128
131 -472.	* +		-7975	70 131
138 -106.	* +		·8121	16 138
142 108. '	* +		.' -8111	13 142
146 325. 149 490.	*	+ +	7926	20 146 66 149
155 1049!	*	+	' -7542	21 155
160 1208 '	*	+ +	. ' -7364	±1 157 30 160
164 1330 '	*	+	-6661	19 164
167 1419 172 1560	_ * _ *	+ .	-6324	45 167 52 172
175 1641 '	*	+	-5324	47 175
178 1719 ' 182 1819 '	- *	. +	-4914	41 178
186 1968 '	*	. +	-4330	24 186
188 2135'		+ -	' -3389	92 188
193 1852	- *	. +	-2579	92 193 31 196
200 1452	*	. +	-163	72 200
204 1245 207 1106	*	. + '	-1199	57 204 60 207
213 951	+		482	20 213
216 728	· · · ·	. + !	-325	52 216
226 169	• *	+. '	-14	, 1 221 30 226
231 30	. x	· ·	-13	38 231
-E 0	MAX S.F. PERCENTAGE TO ALLO	WABLE = 78 % AT FRAME 35		0 FE
	MAX B.M. PERCENTAGE TO ALLO	WABLE = 83 % AT FRAME 178		
MULTILO) A D			

HOLD MASS TABLE

05 - 03 - 2018 10:30:01 Page: 8								
project N.O. to Lome departure ballasted								
Seawater Density : 1.025 MT/M^3 Strength Condition : SEA GOING								
LOCAL	LOZ	DING	DIA	GRAM	S ANA	LYSIS		
DIAGRAM	MEAN	CARGO	F. O.	W. B.	SUM OF	MIN REQ.	MAX. PERM.	
Seagoing	DRAFT	MASS (MT)	WT (MT)	WT (MT)	MASS (MT)	MASS (MT)	MASS (MT)	
NO1 C.HOLD	10.01	2400	0	0	2400	638	6990	OK
NO1&2 C.HOLDS	10.07	8778	0	0	8778	2503	11127	OK
NO2 C.HOLD	10.13	6378	0	0	6378	0	6465	OK
NO2&3 C.HOLDS	10.21	12527	0	0	12527	3005	13865	OK
NO3 C.HOLD	10.28	6149	0	0	6149	1011	11060	OK
NO3&4 C.HOLDS	10.35	8949	0	0	8949	3054	13642	OK
NO4 C.HOLD	10.42	2800	0	0	2800	0	6241	OK
NO4&5 C.HOLDS	10.49	8947	0	0	8947	3223	13639	OK
NO5 C.HOLD	10.56	6147	0	0	6147	1185	12632	OK
NO5&6 C.HOLDS	10.63	8474	0	0	8474	3137	11470	ок
NO6 C.HOLD	10.69	2327	0	0	2327	0	4073	OK

GRAIN STABILITY, SEA GOING CRITERION

NATIONAL CARGO BUREAU, INC.

GRAIN STABILITY CALCULATION

			YEAR BUILT A	I
		NET TONNAGE	OFFICIAL NO.	
GENT				
RAIN LOADING	BOOKLET APPROVED BY			
RAWING NO.		DATE OF APPROVAL		
PPLICABLE REG	ULATIONS			
DDENDUM FOR U	NTRIMMED ENDS APPRO	VED BY		
RAWING NO.		DATE OF APPROVAL		
OADING PORT				
UNKERING PORT	S			
SCHARGE PORT				
TEAMING DISTA	NCE	MILES PER DAY	TIME	
AILY CONSUMPT	ION: FUEL	DIESEL	WATER	
	DISPLACEMENT	DEADWEIGHT	DRAFT	FREEBOARD
INTER	38544	30004	10.199	4.445
UMMER	39440	30899	10.416	4.228
ROPICAL	40337	31796	10.633	4.011
RESH WATER AL	LOWANCE 0.239 TPC	AT SUMMER DRAFT) 41.297		
HIS IS TO CER	TIFY THAT:			
1. THIS CA	ALCULATION IS PREPA	RED IN ACCORDANCE WITH THE	REQUIREMENTS	
OF THE	VESSEL'S GRAIN LOF	DING BOOKLET AND THE APPLI	CABLE GRAIN	
REGULA	TIONS		CHOUT THE	
Z. INE SIA	TN ACCORDANCE WITH	THIS CALCULATION.	GHOOI INE	
, o inol				
ALCULATION PR	EPARED BY:			
				MASTER
		F	XAMINED:	
			N. C.	B SUBVEVOR
			N.C	.B. SURVEYOR

NOTE: ORIGINAL STABILITY CALCULATION AND GRAIN ARRANGEMENT PLAN TO BE SUMITTED TO THE N.C.B. SURVEYOR. ALL TONNAGES USED IN THESE CALCULATIONS SHALL BE SHOWN IN THE SAME UNITS AS USED IN THE GRAIN LOADING BOOKLET.

COMPARTMENT	CARGO	S.F.	GRAIN CUBICS				
NAME	TYPE	(M^3/MT)	100%	ACTUAL	WEIGHT	V.C.G.	MOMENT
NO1 C.HOLD	GRAIN1	1.203	4663	2888	2400	5.90	14160
NO2 C.HOLD	GRAIN1	1.203	7675	7675	6378	8.43	53762
NO3 C.HOLD	GRAIN1	1.203	7400	7400	6149	8.49	52205
NO4 C.HOLD	GRAIN1	1.203	6242	3370	2800	5.38	15075
NO5 C.HOLD	GRAIN1	1.203	7397	7397	6147	8.49	52184
NO6 C.HOLD	GRAIN1	1.203	5258	2800	2327	5.74	13363
NO1 ON HATCH			1201	0	0	0.00	0
NO2 ON HATCH			2869	0	0	0.00	0
NO3 ON HATCH			2869	0	0	0.00	0
NO4 ON HATCH			2504	0	0	0.00	0
NO5 ON HATCH			2869	0	0	0.00	0
NO6 ON HATCH			1997	0	0	0.00	0

SHIP	AND	CARGO	CALCULATION

THIS CALCULATION IS	CARGO TOTALS	26200	7.66	200748
PREPARED IN:	LIGHT SHIP	8541	10.10	86270
[] ENGLISH UNITS	STORES	0	0.00	0
[x] METRIC UNITS				
	SHIP AND CARGO TOTALS	34741		287018

CARGO PLAN: INDICATE HOLDS, TWEEN DECKS, ENGINE SPACES, FITTINGS, STOWAGE,

TONNAGES, ETC.

PART I

FUEL AND WATER CALCULATION

PART II

IN THIS PART YOU CAN EXAMINE DEPARTURE, INTERMEDIATE OR ARRIVAL CONDITION. INTERMEDIATE SECTION IS REQUIRED TO BE COMPLETED IF ARRIVAL SECTION SHOWS IS JUST PRIOR TO BALLASTING WHICH INCLUDES THE EFFECT OF FREE SURFACE BUT NOT EFFECT OF WEIGHT OF THE BALLAST WHICH IS TO BE TAKEN ABOARD.

c

r					1
TANK	TYPE	WEIGHT	V.C.G.	MOMENT	F.S.
	LIQUID				MOMENT
NO1 HFO T	F.O.	40	3.	120	100
NO2 HFO T P	F.O.	150	.37	56	1381
NO2 HFO T S	F.O.	150	.37	56	1381
NO3 HFO T P	F.O.	10	.05	1	296
NO3 HFO T S	F.O.	40	.21	8	296
NO4 HFO P(LS)	F.O.	95	.86	82	169
NO4 HFO S(LS)	F.O.	95	.86	82	169
NO2 HFO SETTL	F.O.	15	11.61	174	21
NO2 HFO SERV	F.O.	15	11.66	175	18
NO1 HFO SERV	F.O.	7	11.33	79	11
NO1 HFO SETTL	F.O.	7	11.26	79	10
NO1 HFO OVRFL	F.O.	2	13.85	28	9
MDO STOR P	D.O.	55	.81	45	130
MDO STOR S	D.O.	55	.81	45	130
MDO SERV	D.O.	11	8.41	92	5
MDO SETTL P	D.O.	9	7.74	70	15
FWT P	F.W.	45	12.28	552	36
FWT S	F.W.	100	12.41	1241	92
DISTILL W TK	F.W.	5	11.16	56	16
COOLING	F.W.	20	4.3	86	156
F.P.TK	B.W.	2	.05		44
NO1 BWT P	B.W.	4	.02		487
NO1 BWT S	B.W.	4	.02		487
NO2 DBWT P	B.W.	3	.01		98
NO2 DBWT S	B.W.	3	.01		98
NO2 TBWT P	B.W.	1	10.78	11	
NO2 TBWT S	B.W.	1	10.78	11	
NO3 DBWT P	B.W.	552	1.04	574	
NO3 DBWT S	B.W.	552	1.04	574	
NO3 TBWT P	B.W.	1	10.78	11	
NO3 TBWT S	B.W.	1	10.78	11	
NO4 BWT P	B.W.	635	7.44	4724	
NO4 BWT S	B.W.	635	7.44	4724	
NO5 DBWT P	B.W.	4	.02		81
NO5 DBWT S	B.W.	4	.02		81

Continue ...

FUEL AND WATER CALCULATION

PART II (continued)

TANK	TYPE	WEIGHT	V.C.G.	MOMENT	F.S.
	LIQUID				MOMENT
NO5 TBWT P	B.W.	1	10.78	11	
NO5 TBWT S	B.W.	1	10.78	11	
NO6 BWT P	B.W.	686	6.3	4320	
NO6 BWT S	B.W.	686	6.3	4320	
NO7 DBWT P	B.W.	3	.01		487
NO7 DBWT S	B.W.	3	.01		487
APT	B.W.	1	7.05	7	25

6817	22434	4709	TOTALS LIQUIDS
	287018	34741	SHIP AND CARGO
	309451	39449	GRAND TOTALS DISPLACEMENT
		7.844	KG
		0.173	FREE SURFACE CORR.(+)
		10.013	KM
		8.017	KGv
		1.996	GM
		0.300	REQUIRED MINIMUM GM
		NOTES	

(1) FREE SURFACE CORR. = <u>SUM OF FREE SURFACE INERTIA MOMENTS</u> DISPLACEMENT

(THIS CORRECTION MUST BE APPLIED TO ALL SHIPS.)

PART III					
		VOLUMETRIC		GRAIN	
	STOW-	GRAIN	HEELING	S.F.	HEELING
COMPARTMENT	AGE	DEPTH	MOMENT	(M^3/MT)	MOMENT
NAME	(1)	(M)	(M^4)	(2)	(M.TM.)
NO1 C.HOLD	PF	8.16	4777	1.203	3969
NO2 C.HOLD	PF	14.50	374	1.203	311
NO3 C.HOLD	PF	14.50	374	1.203	311
NO4 C.HOLD	PF	7.11	7945	1.203	6601
NO5 C.HOLD	PF	14.50	374	1.203	311
NO6 C.HOLD	PF	7.49	6482	1.203	5386
NO1 ON HATCH		0.00	0		0
NO2 ON HATCH		0.00	0		0
NO3 ON HATCH		0.00	0		0
NO4 ON HATCH		0.00	0		0
NO5 ON HATCH		0.00	0		0
NO6 ON HATCH		0.00	0		0
			20325		16889

STABILITY SUMMARY

(1) UNDER STOWAGE INDICATE "F" FOR FILLED COMPARTMENTS,

- 'F-UT' FOR FILLED COMPARTMENTS UNTRIMMED,
- 'PF' FOR PARTLY FILLED COMPARTMENTS,
- 'SEC' FOR SECURED OR OVERSTOWED COMPARTMENTS.
- (2) THE STOWAGE FACTOR USED IN PART III SHALL NOT EXCEED THE VOLUME PER UNIT WEIGHT (TEST WEIGHT) OF THE GRAIN. IF STOWAGE FACTOR IS SAME IN ALL COMPARTMENTS, DIVIDE TOTAL VOLUMETRIC HEELING MOMENT BY STOWAGE FACTOR OR MULTIPLY BY DENSITY TO OBTAIN GRAIN HEELING MOMENT. IF STOWAGE FACTOR VARIES, OBTAIN GRAIN HEELING MOMENT FOR EACH COMPARTMENT.

FOR VESSELS APPROVED UNDER:

REGULATION 4, CHAPTER VI, SOLAS 1974 or REGULATION 4, IMCO RESOLUTION A.264(VIII),SOLAS 1960 or REGULATION 4, IMCO RESOLUTION A.184(VI),SOLAS 1960

DISPLACEMENT (MT)	39449
KGv (M)	8.017
TOTAL GRAIN HEELING MOMENT (MT-M)	16889
MAXIMUM ALLOWABLE HEELING MOMENT (MT-M)	18412

10.5.3- INTERMEDIATE CONDITION WITH INTERMEDIATE BUNKERS AND BALLASTED

A- WEIGHT DISTRIBUTION, INTACT STABILITY PARAMETERS

							05 - 03	- 20)18 11:13:	01 Page: 3	1
		project	N.O to	Lome	, intermedia	ate					
Seav	water Densit	y : 1.025 I	MT/M^3		Strer	ngth Conditi	on : SE	A GOI	ING		
					DISPLACEME	NT SUMMARY					
	I	TEM	WEIG	HT	L.C.G.	V.C.G.	T.C.0	÷.	F.S.MT.	GRAIN MT	
			(T)		(M)	(M)	(M)		(T-M)	(T-M)	
	GRAIN BULK	CARGO	2620	0.00	98.68	7.66	(0.00		16889	
	TOTAL C A	RGO	2620	0.00	98.68	7.66	(0.00		16889	
	FUEL OIL		39	6.00	74.02	1.87	-1	1.17	3863		
	DIESEL OIL		13	0.00	29.33	1.94	-1	1.06	280		
	LUB OIL			0.00	0.00	0.00	0	0.00	0		
	FRESH WATE	R	17	0.00	1.10	11.38	-1	1.90	299		
	WATER BALL	AST	378	2.60	74.15	5.10	0	0.00	2375		
	MISC ITEM	IS		0.00	0.00	0.00	0	0.00	0		
	DEAD	WEIGHT	3067	8.60	94.50	7.27	-(0.03	6817	16889	
	LIGH	TSHIP	854	0.71	81.46	10.10	0	0.00			
	DISP	LACEMENT	3921	9.31	91.66	7.89	-(0.02	6817	16889	
			TRIM -	DRAF	TS				STABI	ILITY	
D	raft at LCF	= 10	.35 M	MCT	(tm/cm) =	570	.6	KM	= 1	10.01	М
L	CB from AP	= 91	.66 M	TRIN	4 by STERN =	-0.	94 M	KG	(solid)=	7.89	м
L	CG from AP	= 91	.66 M	LCF	from AP =	86.	58 M	F S	5 Cor =	0.17	м
A	IR DRAFT	= 32	.63 M	Draf	ft Fwd =	9.	87 M	GM	(solid)=	2.12	м
P	ROPELLER IM	IR= 18	2.6 %	Draf	ft Aft =	10.	81 M	KG	(fluid)=	8.06	м
A	NGLE OF HEEI	= Stbd 0	.69 °	Draf	ft Amid =	10.	34 M	GM	(fluid)=	1.95	м
AIR DRAFT = 32.63 M Draft Fwd = 9.87 M GM(solid)= 2.12 M PROFELLER IMMR= 182.6 % Draft Aft = 10.81 M M KG(fluid)= 8.06 M ANGLE OF HEEL = Stbd 0.69 ° Draft Amid = 10.31 M GM(solid)= 2.12 M KG (fluid)= Stbd 0.69 ° Draft Amid = 10.34 M GM(fluid)= 8.06 M MAXIMUM PERMITTED KG'FOR INTACT STABILITY (A749-WEATHER) = 9.13 M MINIMUM REQUIRED GM'FOR DAM. STAB. (SOLAS CH. II-1, REG.25 & REG.27 OF ICLL) = 0.86 M ACTUAL GRAIN HEELING MOMENT = 16889 T M ALLOWABLE GRAIN HEELING MOMENT (SOLAS 74) = 17897 T M MAX S.F. PERCENTAGE TO ALLOWABLE = 75 % AT FRAME 35 MAX B.M. PERCENTAGE TO ALLOWABLE = 82 % AT FRAME 178											
	_ м п т. т т										

						05 - 0	3 - 2018	B 11:	13:01 Pa	age: 2
	proje	ct N.O to	Lome, in	ntermed	iate					-
Seawater Density :	1.02	5 MT/M^3		Str	ength Condi	tion : S	EA GOIN	3		
DEADWEIGHT BREAKDOWN GRAIN CARGO IN BULK										
	1	YPE OF	S.G.	ę	WEIGHT	VCG	LCG	TCG	COND.	G.H.M
CARGO SPACE		CARGO	CF/MT	TOT	in Tonnes	(M)	(M)	(M)		(T-M)
NO1 C.HOLD	GRA	IN1	42.500	62	2400.00	5.90	157.11	0.0	0 SLACK	3969
NO2 C.HOLD	GRA	IN1	42.500	100	6377.50	8.43	134.48	0.0	0 UNTRM	311
NO3 C.HOLD	GRA	IN1	42.500	100	6149.00	8.49	108.66	0.0	0 UNTRM	311
NO4 C.HOLD	GRA	IN1	42.500	54	2800.00	5.38	83.80	0.0	0 SLACK	6601
NO5 C.HOLD	GRA	IN1	42.500	100	6146.50	8.49	59.05	0.0	0 UNTRM	311
NO6 C.HOLD	GRA	IN1	42.500	53	2327.00	5.74	36.46	0.0	0 SLACK	5386
ТОТ	AL	GRAIN			26200.00	7.66	98.68	0.0	0	16889
		S.G.	ę		WEIGHT	VCG	I	.CG	TCG	F.S.M.
- OTHER ITEMS -		T/M^3	TOT		in Tonnes	(M)	((M)	(M)	(T-M)
FUEL OIL	TAN	KS					·			
NO1 HFO T		0.980		20	40.00	3	.00 1	.68.57	-0.05	100
NO2 HFO T P		0.980		22	80.00	0	.20	83.80	5.50	1381
NO2 HFO T S		0.980	0.980		80.00	0	.20	83.80	-5.50	1381
NO3 HFO T P		0.980		6	10.00	0	.05	63.80	4.00	296
NO3 HFO T S		0.980		23	40.00	0	.21	63.80	-4.00	296
NO4 HFO P(LS)		0.980		50	50.00	0	.45	50.60	4.00	169
NO4 HFO S(LS)		0.980		50	50.00	0	.45	50.60	-4.00	169
NO2 HFO SETTL		0.980		47	15.00	11	.61	15.81	-7.87	21
NO2 HFO SERV		0.980		50	15.00	11	.66	13.41	-7.76	18
NO1 HFO SERV		0.980		26	7.00	11	.33	11.02	-7.38	11
NO1 HFO SETTL		0.980		22	7.00	11	.26	8.24	-7.16	10
NO1 HFO OVRFL		0.980		17	2.00	13	.85 1	68.90	-2.00	9
TOTAL	FUI	EL OI	L		396.00	1	.87	74.02	-1.17	3863
DIESEL OII	LТ	ANKS		1	Note: Under	rlined r	<u>SM</u> der	lotes us	se of maxi	mum FSM
MDO STOR P		0.850		78	55.00	0	.81	32.42	-3.28	130
MDO STOR S		0.850		78	55.00	0	.81	32.42	3.28	130
MDO SERV		0.850		55	11.00	8	.41	10.39	-6.57	5
MDO SETTL P		0.850		22	9.00	7	.74	14.70	-7.24	15
TOTAL DIESEL OIL					130.00	1	.94	29.33	-1.06	280
Note: <u>Underlined FSM</u> denotes use of maximum FSM								mum FSM		

					05 - 03 -	2018 11	:13:01 P	age: 3		
Seawater Density	proje : 1.02	ct N.O to I 5 MT/M^3	ome, inter	mediate Strength Condit	ion : SEA (GOING				
		S.G.	40	WEIGHT	VCG	LCG	TCG	F.S.M.		
- OTHER ITEMS	-	T/M^3	TOT	in Tonnes	(M)	(M)	(M)	(T-M)		
LUB OIL T	ANK	S								
NO1 CYL O STR		0.900	0	0.00	0.00	25.00	4.03	C		
NO2 CYL O STR		0.900	0	0.00	0.00	25.00	1.00	0		
M/E LO STR		0.900	0	0.00	0.00	15.82	7.26	0		
M/E LO SET		0.900	0	0.00	0.00	13.43	7.05	0		
G/E LO STR		0.900	0	0.00	0.00	11.09	6.23	0		
G/E LO SET		0.900	0	0.00	0.00	9.03	6.65	0		
M/E LO SUMP		0.900	0	0.00	0.00	18.20	0.00	0		
TOTAL	LU	BOIL		0.00	0.00	0.00	0.00	0		
FDFCU UNT	FD	TANKS		Note: Under	lined FSM	denotes (ise of maxi	mum FSM		
FUT D	LK	1 000	50	45.00	12 28	-1 09	5.97	36		
FWT S		1.000	68	100.00	12.41	0.94	-6.18	92		
DISTILL W TK		1,000	11	5.00	11,16	2.43	6.07	16		
COOLING		1.000	75	20.00	4.30	6.53	0.00	156		
TOTAL F	RES	H WAT	ER	170.00	11.38	1.10	-1.90	299		
				Note: Under	lined FSM	denotes 1	ise of maxi	mum FSM		
м и т. т. т. о	<u>ар</u> _									
				05 - 03 -	2018 11:	13:01 Pa	ide: 4			
-------------------------	--	-----	--------------	-----------	-----------	------------	---------	--	--	--
					2010 11	10101 10	.gc. i			
Seawater Density : 1.02	Seawater Density : 1.025 MT/M^3 Strength Condition : SEA GOING									
	5.G.	8	WEIGHT	VCG	LCG	TCG	F.S.M.			
- OTHER ITEMS -	T/M^3	TOT	in Tonnes	(M)	(M)	(M)	(T-M)			
BALLAST WATER TANKS										
F.P.TK	1.025	0	2.00	0.05	171.63	-0.01	44			
NO1 BWT P	1.025	0	4.00	0.02	155.87	4.07	487			
NO1 BWT S	1.025	0	4.00	0.02	155.87	-4.07	487			
NO2 DBWT P	1.025	1	3.00	0.01	134.40	8.70	98			
NO2 DBWT S	1.025	1	3.00	0.01	134.40	-8.70	98			
NO2 TBWT P	1.025	1	1.00	10.78	135.00	11.73	0			
NO2 TBWT S	1.025	1	1.00	10.78	135.00	-11.73	0			
NO3 DBWT P	1.025	100	552.20	1.04	108.60	6.72	0			
NO3 DBWT S	1.025	100	552.20	1.04	108.60	-6.72	0			
NO3 TBWT P	1.025	1	1.00	10.78	108.60	11.73	0			
NO3 TBWT S	1.025	1	1.00	10.78	108.60	-11.73	0			
NO4 BWT P	1.025	100	634.90	7.44	83.80	10.92	0			
NO4 BWT S	1.025	100	634.90	7.44	83.80	-10.92	0			
NO5 DBWT P	1.025	2	4.00	0.02	61.59	8.58	81			
NO5 DBWT S	1.025	2	4.00	0.02	61.59	-8.58	81			
NO5 TBWT P	1.025	1	1.00	10.78	59.00	11.71	0			
NO5 TBWT S	1.025	1	1.00	10.78	59.00	-11.71	0			
NO6 BWT P	1.025	100	685.70	6.30	36.32	9.27	0			
NO6 BWT S	1.025	100	685.70	6.30	36.32	-9.27	0			
NO7 DBWT P	1.025	1	3.00	0.01	135.00	4.00	487			
NO7 DBWT S	1.025	1	3.00	0.01	135.00	-4.00	487			
APT	1.025	0	1.00	7.05	4.99	0.00	25			
NO4 C.HOLD/WB	1.025	0	0.00	0.00	83.80	0.00	0			
TOTAL BALLA	ST WA	TER	3782.60	5.10	74.15	0.00	2375			
			Note: Under.	linea r5M	denotes u	se or maxi	num FSM			

	CONDITI	ION'S KG' = 8	06 METERS	
	CROSS (CURVES NG = 0.	00 METERS	
	CRUSS (CORVES RG = 0.	OU METERS	
	RIGHTING A	RM G'Z = GZ -	GG'SIN (0)	
θ	SIN(0)	GZ	GG' SIN (0)	G'Z
10.0	0.174	1.748	1.399	0.348
20.0	0.342	3.518	2.756	0.762
30.0	0.500	5.130	4.030	1.101
40.0	0.643	6.592	5.180	1.412
50.0	0.766	7.704	6.174	1.531
60.0	0.866	8.415	6.979	1.435
70.0	0.940	8.728	1.573	1.155
STABILIT	Y CRITERIA (A749)	ACTU	AL VALUE	REQUIRED
AREA FROM 0 TO	30 DEG		0.290 M RAD	0.055 M RA
AREA FROM 0 TO	40.0 DEG		0.511 M RAD	0.09 M RA
AREA FROM 30 T	0 40.0 DEG		0.221 M RAD	0.03 M RA
RIGHTING ARM A	T 30 DEG		1.101 M	0.2 M
MAX RIGHTING A	RM	1.54	6 M AT 49 DEG	AT ANGLE >=25 DE
INIT METACENT	RIC HEIGHT		1.95 M	0.15 M
GRAIN ST	AB.CRIT. (SOLAS74)	ACTU	AL VALUE	REQUIRED
INIT METACENT	RIC HEIGHT		1.95 M	0.30 1
ANGLE OF HEEL			11.4 DEG	12 DEG. OF DK EDG.
NET AREA UP TO	OMX (40 DEG)		0 283 M RAD	1711EKS ANG = 19.7 DE
	I.M.O WE	ATHER CRITERIA	Res.A.749	
Th(DE)	ANGLE OF UPPER DECI	K IMMERSION		: 19.73 DEG
Th(DE)*.80				: 15.79 DEG
TU (F.)	ANGLE OF FLOODING	EN (SHID HODICH	(T)	: 42.65 DEG
r. H	WIND PRESSURE LEVEL	R FROM MID DEAF	·-, T	: 11.912 M
DW	STEADY WIND HEELING	G ARM	-	: 0.026 M
Th(0)	RESULTANT ANGLE OF	EQUILIBRIUM		: 0.786 DEG
1w2=1.5*1w1		-		: 0.039 M
Th(1)	ANGLE OF WINDWARD I	ROLL DUE TO WAV	E	: 21.48 DEG
Th(c)	ANGLE OF 2nd INTER	CEPT OF GZ-curv	e WITH 1w2	
ſh(2)	MINIMUM OF Th(F) of	r 50 deg or Th((c)	: 42 DEG
AREA A				: 0.148 M RAD
	. 11 77- (0) -1 -1 -1	h. 1	C 4	: 0.545 M RAD
AREA B	: I) Th(0) should	pe less than 1	.oaeg or 80% of	TU (DF)
AREA B REQUIREMENTS	2) 3 3	a he lees at	Zeree D	

GZ CURVE

DEFLECTIONS (SF & BM)

			05 - 03 - 2	018 11:26:01
CASE 1 :	SEA GOING			
	May 11	SF (MT)	May 11	BM (TyM)
Frame	(+)	(-)	Sagging	Hogging
-6	1019	-1019	-5097	5097
35	1733	-1733	-15291	32620
60	3109	-3109	-76453	69317
93	3150	-3129	-109276	86850
122	3109	-3109	-109276	86850
155	3109	-3150	-109276	86850
188	3109	-3109	-42813	38838
213	1600	-1600	-8461	8655
CASE 2 :	IN HARBOR			
	Max. All	. SF (MT)	Max. All.	BM (TxM)
Frame	(+)	(-)	Sagging	Hogging
-6	1233	-1233	-12915	12640
35	2803	-2803	-53007	69011
60	4679	-4679	-145607	136086
93	4343	-4343	-219429	193191
122	4302	-4302	-219429	193191
155	4720	-4720	-209062	183180
188	4811	-4811	-95382	89592
213	2253	-2253	-26697	26269
CASE 3 :	FLOODING CONDITION			
	Max. All	. SF (MT)	Max. All.	BM (TxM)
Frame	(+)	(-)	Sagging	Hogging
-6	1060	-1060	-6830	6769
35	1906	-2171	-23649	32620
60	3415	-4353	-88746	80530
93	3415	-3313	-134027	103976
122	3364	-3293	-134027	103976
155	3822	-3394	-129460	103976
188	3364	-3293	-54434	49949
213	1733	-1733	-12232	12232

		05 - 03 - 2018	11:13:01	Page: 7	
	r project N.O to Lome, intermed:	iate			
Seawater Density	: 1.025 MT/M^3 Stre	ength Condition : SEA GOING			
++	+ S.F. ''' S.F. Max.All	*** B.M B.M.	Max.All		
FRM S.F.	= = = Bulkhead Correction	(+ HOG, - SAG)		B.M.	FRM
AE 0		· · · ·		- 0	AE -1
3 103		*+. *		497	3
8 87		+-		875	8
16 -73	' 2			1041	16
19 -209	• + *	e		828	19
23 -429	· + · *			-92	23
30 -866	* *			-3530	30
35 -1302	'- + *-			-7740	35
41 -1281	• • • •			-13768	41
45 -1285	· + . *		•	-17774	45
48 -1291	· +. *		· .	-20790	48
55 -1381 '	- + *			-28077	55
60 -1454'	+ *		'	-33622	60
66 -1082 '	- +* - *+	· .		-36698 -39326	66
70 -979 .'	* +			-42524	70
74 -889 . 77 -829	· * + · * +		1.1	-45413	74
81 -747.	* +		1	-49821	81
84 -685.	* +		· · · ·	-51464	84
93 -340!			,	-53418	93
95 -388.'	* +		· · ·	-55703	95
99 -514. 102 -607	* +		· . '	-57046	99
108 -791.	• • +			-61519	108
110 -852.	* +		÷ .	-62783	110
113 -944.	* +			-64863	113
122 -1182!	* +		!	-72350	122
124 -908.' 128 -691.'	* + *		· · · ·	-73972 -76432	124
131 -535. '	* +			-77828	131
135 -323.	'* + '* +		.:	-79101	135
142 55.	*	+	1.	-79679	142
146 276. '	*	+	· · · ·	-79049	146
149 444. ' 155 1008'	**	+		-78109 -74474	149 155
157 1074 '.	*	+	1.1	-72759	157
160 1171 . 164 1296 .	*	+ +	·	-69990	160
167 1387 '	*	+ -		-62647	167
172 1532	' - *	+ .	· .	-56684	172
178 1695	*	. +		-52832 -48785	178
182 1798 '	*	. +	•	-43097	182
186 1950 ' 188 2119'	- * *	+	'.	-37001	186
193 1839 '	*	. +	•	-25657	193
196 1667	· · · ·	- +		-21375	196
204 1238	*	. + '		-11910	200
207 1101	*	. + '		-9028	207
213 948 · 216 726	± *- , *	+		-4806	213
221 395		.+ .		-1468	221
226 168				-529	226
FE 0				- 138	231 FE
	MAX S.F. PERCENTAGE TO AL	LOWABLE = 75 % AT FRAME 35			
	MAX B.M. PERCENTAGE TO ALI	LOWABLE = 82 % AT FRAME 178			
MULTIL (D A D				

HOLD MASS TABLES

				0	5 - 03 - 201	18 11:13:0)1 Page: 8)				
project N.O to Lome, intermediate												
Seawater Density : 1.025 MT/M^3 Strength Condition : SEA GOING												
LOCAL LOADING DIAGRAMS ANALYSIS												
	TOCKT TOKDING DINGKAWP ANATIPIP											
DIAGRAM	MEAN	CARGO	F. O.	W. B.	SUM OF	MIN REQ.	MAX. PERM.					
Seagoing	DRAFT	MASS (MT)	WT (MT)	WT (MT)	MASS (MT)	MASS (MT)	MASS (MT)					
NO1 C.HOLD	9.98	2400	0	0	2400	624	6990	OK				
NO1&2 C.HOLDS	10.04	8778	0	0	8778	2466	11127	OK				
NO2 C.HOLD	10.09	6378	0	0	6378	0	6465	ок				
NO2&3 C.HOLDS	10.16	12527	0	0	12527	2953	13865	OK				
NO3 C.HOLD	10.23	6149	0	0	6149	982	11060	ок				
NO3&4 C.HOLDS	10.30	8949	0	0	8949	2992	13642	ок				
NO4 C.HOLD	10.36	2800	0	0	2800	0	6241	ок				
NO4&5 C.HOLDS	10.43	8947	0	0	8947	3151	13639	ок				
NO5 C.HOLD	10.50	6147	0	0	6147	1145	12632	ок				
NO5&6 C.HOLDS	10.56	8474	0	0	8474	3060	11470	ок				
NO6 C.HOLD	10.62	2327	0	0	2327	0	4073	ок				

- MULTILOAD -

GRAIN STABILITY, SEA GOING CRITERION

NATIONAL CARGO BUREAU, INC.

GRAIN STABILITY CALCULATION

			YEAR BUILT AT								
ľ		NET TONNAGE	OFFICIAL NO.								
AGENT											
GRAIN LOADING BOOKL	ET APPROVED BY										
DRAWING NO DATE OF APPROVAL											
APPLICABLE REGULATI	ons										
ADDENDUM FOR UNTRIM	ADDENDUM FOR UNTRIMMED ENDS APPROVED BY										
DRAWING NO.		DATE OF APPROVAL									
LOADING PORT											
BUNKERING PORTS											
DISCHARGE PORT											
STEAMING DISTANCE		MILES PER DAY	TIME								
DAILY CONSUMPTION:	FUEL	DIESEL	WATER								
DI	SPLACEMENT	DEADWEIGHT	DRAFT	FREEBOARD							
SUMMER	38544	30004	10.199	4.445							
TROPICAL	40337	31796	10.410	4.011							
FRESH WATER ALLOWAN	CE 0.239 TPC (A	T SUMMER DRAFT) 41.297									
THIS IS TO CERTIFY	THAT:										
1. THIS CALCULA	TION IS PREPAR	ED IN ACCORDANCE WITH THE REQUIREM	ENTS								
OF THE VESS	EL'S GRAIN LOAD	ING BOOKLET AND THE APPLICABLE GR	AIN								
REGULATIONS			1.5								
Z. THE STABILIT	CORDANCE WITH	THIS CALCULATION.	16.								
CALCULATION PREPARE	D BY:										
			М	ASTER							
		EXAMINED:	N.C.B.	. SURVEYOR							
		DATE:									

NOTE: ORIGINAL STABILITY CALCULATION AND GRAIN ARRANGEMENT PLAN TO BE SUMITTED TO THE N.C.B. SURVEYOR. ALL TONNAGES USED IN THESE CALCULATIONS SHALL BE SHOWN IN THE SAME UNITS AS USED IN THE GRAIN LOADING BOOKLET.

COMPARTMENT	CARGO	S.F.	GRAIN	CUBICS			
NAME	TYPE	(M^3/MT)	100%	ACTUAL	WEIGHT	V.C.G.	MOMENT
NO1 C.HOLD	GRAIN1	1.203	4663	2888	2400	5.90	14160
NO2 C.HOLD	GRAIN1	1.203	7675	7675	6378	8.43	53762
NO3 C.HOLD	GRAIN1	1.203	7400	7400	6149	8.49	52205
NO4 C.HOLD	GRAIN1	1.203	6242	3370	2800	5.38	15075
NO5 C.HOLD	GRAIN1	1.203	7397	7397	6147	8.49	52184
NO6 C.HOLD	GRAIN1	1.203	5258	2800	2327	5.74	13363
NO1 ON HATCH			1201	0	0	0.00	0
NO2 ON HATCH			2869	0	0	0.00	0
NO3 ON HATCH			2869	0	0	0.00	0
NO4 ON HATCH			2504	0	0	0.00	0
NO5 ON HATCH			2869	0	0	0.00	0
NO6 ON HATCH			1997	0	0	0.00	0

SHIP AND CARGO CALCULATION

PART I

THIS CALCULATION IS	CARGO TOTALS	26200	7.66	200748
PREPARED IN:	LIGHT SHIP	8541	10.10	86270
[] ENGLISH UNITS	STORES	0	0.00	0
[x] METRIC UNITS				
	SHIP AND CARGO TOTALS	34741		287018

CARGO PLAN: INDICATE HOLDS, TWEEN DECKS, ENGINE SPACES, FITTINGS, STOWAGE, TONNAGES, ETC.

FUEL AND WATER CALCULATION

PART II

IN THIS PART YOU CAN EXAMINE DEPARTURE, INTERMEDIATE OR ARRIVAL CONDITION. INTERMEDIATE SECTION IS REQUIRED TO BE COMPLETED IF ARRIVAL SECTION SHOWS IS JUST PRIOR TO BALLASTING WHICH INCLUDES THE EFFECT OF FREE SURFACE BUT NOT EFFECT OF WEIGHT OF THE BALLAST WHICH IS TO BE TAKEN ABOARD.

TANK	TYPE	WEIGHT	V.C.G.	MOMENT	F.S.
	LIQUID				MOMENT
NO1 HFO T	F.O.	40	3.	120	100
NO2 HFO T P	F.O.	80	.2	16	1381
NO2 HFO T S	F.O.	80	.2	16	1381
NO3 HFO T P	F.O.	10	.05	1	296
NO3 HFO T S	F.O.	40	.21	8	296
NO4 HFO P(LS)	F.O.	50	.45	23	169
NO4 HFO S(LS)	F.O.	50	.45	23	169
NO2 HFO SETTL	F.O.	15	11.61	174	21
NO2 HFO SERV	F.O.	15	11.66	175	18
NO1 HFO SERV	F.O.	7	11.33	79	11
NO1 HFO SETTL	F.O.	7	11.26	79	10
NO1 HFO OVRFL	F.O.	2	13.85	28	9
MDO STOR P	D.O.	55	.81	45	130
MDO STOR S	D.O.	55	.81	45	130
MDO SERV	D.O.	11	8.41	92	5
MDO SETTL P	D.O.	9	7.74	70	15
FWI P	F.W.	45	12.28	552	36
FWI S	F.W.	100	12.41	1241	92
DISTILL W TK	F.W.	5	11.16	56	16
COOLING	F.W.	20	4.3	86	156
F.P.TK	B.W.	2	.05		44
NO1 BWT P	B.W.	4	.02		487
NO1 BWT S	B.W.	4	.02		487
NO2 DBWT P	B.W.	3	.01		98
NO2 DBWT S	B.W.	3	.01		98
NO2 TBWT P	B.W.	1	10.78	11	
NO2 TBWT S	B.W.	1	10.78	11	
NO3 DBWT P	B.W.	552	1.04	574	
NO3 DBWT S	B.W.	552	1.04	574	
NO3 TBWT P	B.W.	1	10.78	11	
NO3 TBWT S	B.W.	1	10.78	11	
NO4 BWT P	B.W.	635	7.44	4724	
NO4 BWT S	B.W.	635	7.44	4724	
NO5 DBWT P	B.W.	4	.02		81
NO5 DBWT S	B.W.	4	.02		81

Continue ...

FUEL AND WATER CALCULATION

PART II (continued)

TANK	TYPE	WEIGHT	V.C.G.	MOMENT	F.S.
	LIQUID				MOMENT
NO5 TBWT P	B.W.	1	10.78	11	
NO5 TBWT S	B.W.	1	10.78	11	
NO6 BWT P	B.W.	686	6.3	4320	
NO6 BWT S	B.W.	686	6.3	4320	
NO7 DBWT P	B.W.	3	.01		487
NO7 DBWT S	B.W.	3	.01		487
APT	B.W.	1	7.05	7	25

6817	22235	4479	TOTALS LIQUIDS
	287018	34741	SHIP AND CARGO
	309253	39219	GRAND TOTALS DISPLACEMENT
		7.885	KG
		0.174	FREE SURFACE CORR.(+)
		10.007	KM
		8.059	KGv
		1.948	GM
		0.300	REQUIRED MINIMUM GM
		NOTES	

(1) FREE SURFACE CORR. = <u>SUM OF FREE SURFACE INERTIA MOMENTS</u> DISPLACEMENT

(THIS CORRECTION MUST BE APPLIED TO ALL SHIPS.)

PART III									
		VOLUMETRIC		GRAIN					
	STOW-	GRAIN	HEELING	S.F.	HEELING				
COMPARTMENT	AGE	DEPTH	MOMENT	(M^3/MT)	MOMENT				
NAME	(1)	(M)	(M^4)	(2)	(M.TM.)				
NO1 C.HOLD	PF	8.16	4777	1.203	3969				
NO2 C.HOLD	PF	14.50	374	1.203	311				
NO3 C.HOLD	PF	14.50	374	1.203	311				
NO4 C.HOLD	PF	7.11	7945	1.203	6601				
NO5 C.HOLD	PF	14.50	374	1.203	311				
NO6 C.HOLD	PF	7.49	6482	1.203	5386				
NO1 ON HATCH		0.00	0		0				
NO2 ON HATCH		0.00	0		0				
NO3 ON HATCH		0.00	0		0				
NO4 ON HATCH		0.00	0		0				
NO5 ON HATCH		0.00	0		0				
NO6 ON HATCH		0.00	0		0				
			20325		16889				

STABILITY SUMMARY

(1) UNDER STOWAGE INDICATE "F" FOR FILLED COMPARTMENTS,

'F-UT' FOR FILLED COMPARTMENTS UNTRIMMED,

'PF' FOR PARTLY FILLED COMPARTMENTS,

'SEC' FOR SECURED OR OVERSTOWED COMPARTMENTS.

(2) THE STOWAGE FACTOR USED IN PART III SHALL NOT EXCEED THE VOLUME PER UNIT WEIGHT (TEST WEIGHT) OF THE GRAIN. IF STOWAGE FACTOR IS SAME IN ALL COMPARTMENTS, DIVIDE TOTAL VOLUMETRIC HEELING MOMENT BY STOWAGE FACTOR OR MULTIPLY BY DENSITY TO OBTAIN GRAIN HEELING MOMENT. IF STOWAGE FACTOR VARIES, OBTAIN GRAIN HEELING MOMENT FOR EACH COMPARTMENT.

FOR VESSELS APPROVED UNDER:

REGULATION 4, CHAPTER VI, SOLAS 1974 or

REGULATION 4, IMCO RESOLUTION A.264 (VIII), SOLAS 1960 or

REGULATION 4, IMCO RESOLUTION A.184(VI), SOLAS 1960

DISPLACEMENT (MT)	39219
KGv (M)	8.059
TOTAL GRAIN HEELING MOMENT (MT-M)	16889
MAXIMUM ALLOWABLE HEELING MOMENT (MT-M)	17897

10.5.4- ARRIVAL CONDITION WITH MINIMUM BUNKERS AND BALLASTED

A- WEIGHT DISTRIBUTION, INTACT STABILITY PARAMETERS

									05 - 0	03 -	- 20	18 10:48:	01 Page	: 1
Seaw	ater Densit	r	oject	N.O to	Lome	e arrival b	alla	asted ch Conditi	0.0.0	SFA	GOT	NG		
Scan	Schwadel Schology - 11025 M/H 0													
	DISPLACEMENT SUMMARY													
	I	TEM		WEIG	HT	L.C.G. V.C.G. T		т.С	G		F.S.MT.	GRAIN MT	٦	
				(T)		(M)		(M)	(1	M)		(T-M)	(T-M)	
	GRAIN BULK	CARGO		26200.00 98.68 7.66 0.00			1688	9						
	TOTAL C A	RGO		2620	0.00	98.6	8	7.66		0	.00		1688	9
	FUEL OIL			16	6.00	78.4	7	4.00		-2	.79	3863		-
	DIESEL OIL			13	0.00	29.3	3	1.94		-1	.06	280		-
	LUB OIL				0.00	0.0	0	0.00		0	.00	0		-
	FRESH WATE	R		17	0.00	1.1	0	11.38		-1	.90	299		-
	WATER BALL	AST		378	2.60	74.1	5	5.10		0	.00	2375		-
	MISC ITEM	IS			0.00	0.0	0	0.00		0	.00	0		-
	DEAD	WEIGHT		3044	8.60	94.6	8	7.32		-0.	.03	6817	1688	9
	LIGH	TSHIP	_	854	0.71	81.4	6	10.10		0	.00			-
	DISP	LACEMEN	1	3898	9.31	91.7	8	7.93		-0.	.02	6817	1688	9
				TRIM -	DRAF	TS						STAB	LITY	
Dr	aft at LCF	=	10	.30 M	MCT	(tm/cm)	=	569.9 KMT		=	10.0	0 M		
LC	B from AP	=	91	.78 M	TRI	M by STERN	=	-0.	.88 M KG		KG (solid)=	7.9	3 M
LC	G from AP	=	91	.78 M	LCF	from AP	=	86.	62 M		FS	Cor =	0.1	7 M
AI	R DRAFT	=	32	.72 M	Drai	ft Fwd	=	9.	9.84 M GM		GM (solid)=	2.0	7 M
PR	OPELLER IM	ſR=	18	1.2 %	Dra	ft Aft	=	10.72 M KG		KG (fluid)=	8.1	0 M	
AN	GLE OF HEEI	. =	Stbd 0	.72°	Drat	ft Amid	=	10.	28 M		GM (fluid)=	1.9	0 M
	KG' FOR CONDITION = KG(solid) + F S Cor = 7.93 + 0.17 = 8.10 M MAXIMUM PERMITTED KG' FOR INTACT STABILITY (A749-WEATHER) = 9.12 M MINIMUM REQUIRED GM' FOR DAM. STAB. (SOLAS CH. II-1, REG.25 & REG.27 OF ICLL) = 0.86 M ACTUAL GRAIN HEELING MOMENT = 16889 T M ALLOWABLE GRAIN HEELING MOMENT (SOLAS 74) = 17344 T M MAX S.F. PERCENTAGE TO ALLOWABLE = 72 % AT FRAME 35 MAX B.M. PERCENTAGE TO ALLOWABLE = 82 % AT FRAME 178													
	M II T T T													

	05 - 03 - 2018 10:48:01 Page: 2									
	proje	ct N.O to	Lome ar:	rival k	allasted					
Seawater Density :	1.02	5 MT/M^3		Str	ength Condi	tion : S	SEA GOING	;		
GRAIN CARGO IN	CDAIN CARCO IN BULK									
	1	YPE OF	S.G.	8	WEIGHT	VCG	LCG	TCG	COND.	G. H. M
CARGO SPACE		CARGO	CF/MT	TOT	in Tonnes	(M)	(M)	(M)	001121	(T-M)
NO1 C.HOLD	GRA	INI	42.500	62	2400.00	5.90	157.11	0.00) SLACK	3969
NO2 C.HOLD	GRA	IN1	42.500	100	6377.50	8.43	134.48	0.00	UNTRM	311
NO3 C.HOLD	GRA	INI	42.500	100	6149.00	8.49	108.66	0.00	UNTRM	311
NO4 C.HOLD	GRA	IN1	42.500	54	2800.00	5.38	83.80	0.00	SLACK	6601
NO5 C.HOLD	GRA	IN1	42.500	100	6146.50	8.49	59.05	0.00	UNTRM	311
NO6 C.HOLD	GRA	IN1	42.500	53	2327.00	5.74	36.46	0.00	SLACK	5386
тота	A L	GRAIN			26200.00	7.66	98.68	0.00	D	16889
					11				-	
		8.0	•		URICUT	VCC		CC	TOC	FCM
- OTHER ITEMS -		T/M^3	TOT		in Tonnes	(M)	(M)	(M)	(T-M)
FUEL OIL 1	FUEL OIL TANKS									
NO1 HFO T		0.980)	20	40.00	3	.00 1	68.57	-0.05	100
NO2 HFO T P		0.980)	3	10.00	0	0.02		5.50	1381
NO2 HFO T S		0.980)	3	10.00	0	.02	83.80	-5.50	1381
NO3 HFO T P		0.980)	6	10.00	0	.05	63.80	4.00	296
NO3 HFO T S		0.980)	23	40.00	0	0.21		-4.00	296
NO4 HFO P(LS)		0.980)	5	5.00	0	0.05		4.00	169
NO4 HFO S(LS)		0.980		5	5.00	0	.05	50.60	-4.00	169
NO2 HFO SETTL		0.980		47	15.00	11	.61	15.81	-7.87	21
NO2 HFO SERV		0.980		50	15.00	11	.66	13.41	-7.76	18
NO1 HFO SERV		0.980		26	7.00	11	.33	11.02	-7.38	11
NO1 HFO SETTL		0.980		22	7.00	11	.26	8.24	-7.16	10
NO1 HFO OVRFL		0.980		17	2.00	13	.85 1	.68.90	-2.00	9
TOTAL	FUI	EL OI	L		166.00	4	.00	78.47	-2.79	3863
DIESEL OII	LТ	ANKS			Note: Under	rinea f	on der	iotes us	e or maxi	mum r SM
MDO STOR P		0.850)	78	55.00	0	.81	32.42	-3.28	130
MDO STOR S		0.850)	78	55.00	0	.81	32.42	3.28	130
MDO SERV		0.850)	55	11.00	8	.41	10.39	-6.57	5
MDO SETTL P		0.850)	22	9.00	7	.74	14.70	-7.24	15
TOTAL D	IE S	SEL O	IL		130.00	1	.94	29.33	-1.06	280
					Note: Under	rlined F	SM der	otes us	e of maxi	mum FSM
MULTILOA	A D -									

111

· · · · · · · · · · · · · · · · · · ·								
					05 - 03 -	2018 10	:48:01 P	age: 3
	project N.O	to Lo	ome arriva	1 ballasted		2011/2		
Seawater Density	: 1.025 MT/M	<u>^3</u>		strength Condit	ion : SEA (GOING		
					1100	1.00		
- OTHER ITEMS -	- T/M	^3	* TOT	in Tonnes	(M)	(M)	(M)	r.5.M. (T-M)
		Ŭ			(/	(/	(/	(/
LUB UIL I	ANKS	900	0	0.00	0.00	25.00	4.03	
NO2 CVL O STR		900	0	0.00	0.00	25.00	1.00	
M/F IO STR		900	0	0.00	0.00	15.92	7.26	0
M/E LO SET	0	900	0	0.00	0.00	13.43	7.05	0
G/E LO STR	0	900	ů.	0.00	0.00	11.09	6.23	0
G/E LO SET	0	.900	ő	0.00	0.00	9.03	6.65	0
M/E LO SUMP	0	.900	0	0.00	0.00	18.20	0.00	0
ΤΟΤΑΙ	LUB O	IL	-	0.00	0.00	0.00	0.00	0
				Note: Under	lined FSM	denotes 1	use of maxi	mum FSM
FRESH WAT	ER TAN	КS						
FWT P	1	.000	59	45.00	12.28	-1.09	5.87	36
FWT S	1	.000	68	100.00	12.41	0.94	-6.18	92
DISTILL W TK	1	.000	11	5.00	11.16	2.43	6.07	16
COOLING	1	.000	75	20.00	4.30	6.53	0.00	156
TOTAL F	RESH W	ATE	E R	170.00	11.38	1.10	-1.90	299
				Note: Under	lined FSM	denotes u	use of maxi	mum FSM

				05 - 03 -	2018 10:	:48:01 Pa	age: 4	
proje	ct N.O to I	Lome arriva	1 ballasted					
Seawater Density : 1.02	25 MT/M^3		Strength Condit	ion : SEA (GOING			
	S.G.	olo	WEIGHT	VCG	LCG	TCG	F.S.M.	
- OTHER ITEMS -	T/M^3	TOT	in Tonnes	(M)	(M)	(M)	(T-M)	
BALLAST WATE	R TAN	КS						
F.P.TK	1.025	0	2.00	0.05	171.63	-0.01	44	
NO1 BWT P	1.025	0	4.00	0.02	155.87	4.07	487	
NO1 BWT S	1.025	0	4.00	0.02	155.87	-4.07	487	
NO2 DBWT P	1.025	1	3.00	0.01	134.40	8.70	98	
NO2 DBWT S	1.025	1	3.00	0.01	134.40	-8.70	98	
NO2 TBWT P	1.025	1	1.00	10.78	135.00	11.73	0	
NO2 TBWT S	1.025	1	1.00	10.78	135.00	-11.73	0	
NO3 DBWT P	1.025	100	552.20	1.04	108.60	6.72	0	
NO3 DBWT S	1.025	100	552.20	1.04	108.60	-6.72	0	
NO3 TBWT P	1.025	1	1.00	10.78	108.60	11.73	0	
NO3 TBWT S	1.025	1	1.00	10.78	108.60	-11.73	0	
NO4 BWT P	1.025	100	634.90	7.44	83.80	10.92	0	
NO4 BWT S	1.025	100	634.90	7.44	83.80	-10.92	0	
NO5 DBWT P	1.025	2	4.00	0.02	61.59	8.58	81	
NO5 DBWT S	1.025	2	4.00	0.02	61.59	-8.58	81	
NO5 TBWT P	1.025	1	1.00	10.78	59.00	11.71	0	
NO5 TBWT S	1.025	1	1.00	10.78	59.00	-11.71	0	
NO6 BWT P	1.025	100	685.70	6.30	36.32	9.27	0	
NO6 BWT S	1.025	100	685.70	6.30	36.32	-9.27	0	
NO7 DBWT P	1.025	1	3.00	0.01	135.00	4.00	487	
NO7 DBWT S	1.025	1	3.00	0.01	135.00	-4.00	487	
APT	1.025	0	1.00	7.05	4.99	0.00	25	
NO4 C.HOLD/WB	1.025	0	0.00	0.00	83.80	0.00	0	
TOTAL BALLA	IST WA	TER	3782.60	5.10	74.15	0.00	2375	
			Note: Under.	lined FSM	denotes u	se of maxim	mum FSM	

Jer Demorol	. 1.025 MI/H 5		Strength Co	JIGICION . SEA (30110		
	CON	DITION'S	6 KG' = 8.	10 METERS			
	CRO	SS CURVE	.S KG = 0.	00 METERS			
	RIGHTIN	IG ARM	G'Z = GZ -	GG' SIN (0)			
e	SIN(0)		GZ	GG' SIN (0)		G'Z	
10	0 0 174		1 747	1 407	,	0.340	
20	.0 0.342		3.518	2.772	2 0.746		
30	.0 0.500		5.137	4.052	2	1.085	
40	.0 0.643		6.605	5.210		1.395	
50	.0 0.766		7.719	6.209	,	1.510	
60	.0 0.866		8.428	7.019	,	1.409	
70	.0 0.940		8.737	7.616	5	1.122	
STABI	LITY CRITERIA (A749)		ACTU	AL VALUE		REQUIRED	
AREA FROM 0	TO 30 DEG			0.284 M RAD		0.055 M	RAI
AREA FROM 0	TO 40.0 DEG			0.502 M RAD		0.09 M	RAI
AREA FROM 3) TO 40.0 DEG			0.218 M RAD		0.03 M	RAI
RIGHTING AR	4 AT 30 DEG			1.085 M	0.2 M		
MAX RIGHTIN	G ARM		1.52	6 M AT 49 DEG	1	AT ANGLE >=25	DEC
INII MEIACI	LNIRIC HEIGHI			1.90 M		0.15 M	
GRAIN	STAB.CRIT. (SOLAS74)		ACTU	AL VALUE		REQUIRED	
INIT METAC	ENTRIC HEIGHT		1010	1.90 M		0.3	0 1
ANGLE OF HE	CL			11.7 DEG	12 DEG. or DK EDGE		
					IMMERS ANG = 20.0 DEG		
NET AREA UP	TO QMX(40 DEG)			0.274 M RAD		.075 M	-RAI
	I.M.O	WEATHE	R CRITERIA	Res.A.749			
Th(DE)	ANGLE OF UPPER	DECK IM	ERSION		:	19.97 DEG	
Th(DE)*.80					:	15.97 DEG	
Th(F)	ANGLE OF FLOODI	ING			:	42.94 DEG	
A	LATERAL WINDAGE	E AREA (S	SHIP UPRIGH	IT)		1689 M2	
H	WIND PRESSURE L	EVER FRO	OM MID DRAF	т		11.900 M	
DW (O)	STEADY WIND HEE	LLING ARM	1			0.026 M	
10(U)	RESULTANT ANGLE	OF EQUI	LLIBRIUM			0.814 DEG	
1W2=1.5*1W1	ANCLE OF LITERS		DUE TO USU	IF.		0.040 M	
III(I) Th(c)	ANGLE OF WINDWA	TERCERT	OF G7-CUT	A WITH 142		21.30 DEG	
Th (2)	MINIMUM OF THE	and the second s	deg or Th/	(c)		4.2 DEG	
AREA A	(2) HININGH OF IN(F) OF 50 deg of IN(C) : 42 DEG						
AREA B					-	0.535 M RAD	
REOUIREMENTS : 1) Th(0) should be less than 16deg or 80% of Th(
2) Area A should be less than Area B							

GZ CURVE

DEFLECTIONS (SF & BM)

CASE 1 :	SEA GOING					
_	Max. Al	1. SF (MT)	Max. All	. BM (TxM)		
Frame	(+)	(-)	Sagging	Hogging		
-6	1019	-1019	-5097	5097		
35	1733	-1733	-15291	32620		
60	3109	-3109	-76453	69317		
93	3150	-3129	-109276	86850		
122	3109	-3109	-109276	86850		
155	3109	-3150	-109276	86850		
213	1600	-3109	-42813 -8461	38838 8655		
ASE 2 :	IN HARBOR Max. Al	1. SF (MT)	Max. All	Max. All. BM (TxM)		
rrame	(†)	(-)	Jagging	nogging		
-6	1233	-1233	-12915	12640		
35	2803	-2803	-53007	136086		
60	4679	-4679	-145607	193191		
122	4343	-4302	-219429	193191		
155	4720	-4720	-209062	183180		
188	4811	-4811	-95382	89592		
213	2253	-2253	-26697	26269		
ASE 3 :	FLOODING CONDITIC	DN 1. SF (MT)	Max. All	. BM (TxM)		
Frame	(+)	(-)	Sagging	Hogging		
-6	1060	-1060	-6830	6769		
35	1906	-2171	-23649	32620		
60	3415	-4353	-88746	80530		
93	3415	-3313	-134027	103976		
122	3364	-3293	-134027	103976		
155	3822	-3394	-129460	103976		
188	3364	-3293	-54434	49949		
213	1733	-1733	-12232	12232		
188 213	3364 1733	-3293 -1733	-54434 -12232	49949 12232		

		05 - 03 - 2018 10	:48:01 Page: 7
	r project N.O to Lome arrival bal	llasted	
Seawater Density	: 1.025 MT/M^3 Stren	gth Condition : SEA GOING	
++-	+ S.F. ''' S.F. Max.All	*** B.M B.M. Max	.All
FRM S.F.	= = = Bulkhead Correction	(+ HOG, - SAG)	B.M. FRM
AE 0		· · ·	0 AE 212 -1
3 110	' * +	E t	513 3
8 97	***		917 8
16 -53	• +*	-	1222 16
19 -184	· +*		1012 19
27 -638	+ *	· · · ·	-1381 27
30 -826	· · + . *		-3062 30
37 -1235	' + .*		-9037 37
41 -1224	* *		-12871 41
45 -1222 48 -1224	· + · *		-16685 45 -19545 48
52 -1263	- + *		-23424 52
55 -1303 ' 60 -1370' ·	+ + + + - +		' -31651 60
63 -1105 '	. +*		-34547 63
66 -1035 ' . 70 -957 '	. X		-37040 66 -40127 70
74 -876 .	* +		-42960 74
77 -812.	* +		-44911 77
84 -659.	* +		. ' -48859 84
88 -569. '	* +		. ' -50724 88
93 -304: 95 -359.'	* +		52344 93
99 -500. '	* +		. ' -54098 99
102 -603.	* +		-58589 108
110 -878.	* +		-59889 110
113 -982.	* +		-62046 113
122 -1253!	*+		' -69929 122
124 -978.' 128 -757 '	* +		71664 124
131 -598. '	* +		75892 131
135 -382.	'* +		! -77360 135 -70005 130
142 3. '	* +		.' -78250 142
146 227. '	*	+	. ' -77782 146
149 398.	* - *	+	. ' -76957 149 ' -73532 155
157 1034 '.	*	+ .	-71881 157
160 1134 '. 164 1263 '	*	+ .	' -69204 160 ' -65270 164
167 1356 '	. *	+ .	-62053 167
172 1504 175 1590	*	+ . '	-56208 172
178 1672 '	*	. +	-48432 178
182 1777 ' 186 1932 '	- *	. +	-42814 182
188 2102'		·	' -33503 188
193 1825	- *	- +	-25523 193
200 1434	*	. + '	-16229 200
204 1231	'*	+	-11865 204
213 945	+		4793 213
216 724	*	. + :	-3235 216
221 394 226 168	*	.+ ' +. '	-1465 221 -528 226
231 30	. x		-138 231
FE 0	MAX S.F. PERCENTAGE TO ALLA	OWABLE = 72 % AT FRAME 35	0 FE
	MAX B.M. PERCENTAGE TO ALLO	WABLE = 82 % AT FRAME 178	
MULTILO) A D		

HOLD MASS TABLES

				0	5 - 03 - 201	10:48:0)1 Page: 8	8
project	N.O to 1	Lome arrival	ballast	ed				
Seawater Density : 1.025 1	MT/M^3	S	trength	Conditio	n : SEA GOIN	1G		
LOCAL	LOP	DING	DIA	GRAM	S ANA	LYSIS		
DIAGRAM	MEAN	CARGO	F. O.	W. B.	SUM OF	MIN REQ.	MAX. PERM.]
Seagoing	DRAFT	MASS (MT)	WT (MT)	WT (MT)	MASS (MT)	MASS (MT)	MASS (MT)	
NO1 C.HOLD	9.95	2400	0	0	2400	610	6990	OK
NO162 C.HOLDS	10.00	8778	0	0	8778	2429	11127	OK
NO2 C.HOLD	10.06	6378	0	0	6378	0	6465	OK
NO2&3 C.HOLDS	10.12	12527	0	0	12527	2900	13865	OK
NO3 C.HOLD	10.19	6149	0	0	6149	953	11060	OK
NO3&4 C.HOLDS	10.25	8949	0	0	8949	2931	13642	OK
NO4 C.HOLD	10.31	2800	0	0	2800	0	6241	OK
NO4&5 C.HOLDS	10.37	8947	0	0	8947	3078	13639	OK
NO5 C.HOLD	10.43	6147	0	0	6147	1105	12632	OK
NO5&6 C.HOLDS	10.49	8474	0	0	8474	2984	11470	OK
NO6 C.HOLD	10.55	2327	0	0	2327	0	4073	OK

- MULTILOAD -

GRAIN STABILITY, SEA GOING CRITERION

NATIONAL CARGO BUREAU, INC.

GRAIN STABILITY CALCULATION

			YEAR BUILT AT	1
		NET TONNAGE	OFFICIAL NO.	
GENT				
RAIN LOADING	BOOKLET APPROVED E	Y		
RAWING NO.		DATE OF APPROVAL		
PPLICABLE REG	ULATIONS			
DDENDUM FOR U	NTRIMMED ENDS APPP	OVED BY		
RAWING NO.		DATE OF APPROVAL		
OADING PORT				
UNKERING PORT	S			
ISCHARGE PORT				
TEAMING DISTA	NCE	MILES PER DAY	TIME	
AILY CONSUMPT	ION: FUEL	DIESEL	WATER	
	DISPLACEMENT	DEADWEIGHT	DRAFT	FREEBOARD
INTER	38544	30004	10.199	4.445
UMMER	39440	30899	10.416	4.228
ROPICAL	40337	31796	10.633	4.011
RESH WATER AL	LOWANCE 0.239 TPC	(AT SUMMER DRAFT) 41.297		
HIS IS TO CER	TIFY THAT:			
1. THIS CA	ALCULATION IS PREPA	ARED IN ACCORDANCE WITH THE	REQUIREMENTS	
OF THE	VESSEL'S GRAIN LO	ADING BOOKLET AND THE APPLIC	CABLE GRAIN	
REGULA	TIONS			
2. THE STA	ABILITY OF THE VES	SEL WILL BE MAINTAINED THROU	GHOUT THE	
VOYAGE	IN ACCORDANCE WIT	H THIS CALCULATION.		
ALCULATION PR	EPARED BY:			
				MASTER
		E	XAMINED:	
		_	N.C.	.B. SURVEYOR

NOTE: ORIGINAL STABILITY CALCULATION AND GRAIN ARRANGEMENT PLAN TO BE SUMITTED TO THE N.C.B. SURVEYOR. ALL TONNAGES USED IN THESE CALCULATIONS SHALL BE SHOWN IN THE SAME UNITS AS USED IN THE GRAIN LOADING BOOKLET.

COMPARTMENT	CARGO	S.F.	GRAIN	CUBICS			
NAME	TYPE	(M^3/MT)	100%	ACTUAL	WEIGHT	V.C.G.	MOMENT
NO1 C.HOLD	GRAIN1	1.203	4663	2888	2400	5.90	14160
NO2 C.HOLD	GRAIN1	1.203	7675	7675	6378	8.43	53762
NO3 C.HOLD	GRAIN1	1.203	7400	7400	6149	8.49	52205
NO4 C.HOLD	GRAIN1	1.203	6242	3370	2800	5.38	15075
NO5 C.HOLD	GRAIN1	1.203	7397	7397	6147	8.49	52184
NO6 C.HOLD	GRAIN1	1.203	5258	2800	2327	5.74	13363
NO1 ON HATCH			1201	0	0	0.00	0
NO2 ON HATCH			2869	0	0	0.00	0
NO3 ON HATCH			2869	0	0	0.00	0
NO4 ON HATCH			2504	0	0	0.00	0
NO5 ON HATCH			2869	0	0	0.00	0
NO6 ON HATCH			1997	0	0	0.00	0

SHIP	AND	CARGO	CALCULATION

THIS CALCULATION IS	CARGO TOTALS	26200	7.66	200748
PREPARED IN:	LIGHT SHIP	8541	10.10	86270
[] ENGLISH UNITS	STORES	0	0.00	0
[x] METRIC UNITS				
	SHIP AND CARGO TOTALS	34741		287018

CARGO PLAN: INDICATE HOLDS, TWEEN DECKS, ENGINE SPACES, FITTINGS, STOWAGE,

TONNAGES, ETC.

PART I

FUEL AND WATER CALCULATION

PART II

IN THIS PART YOU CAN EXAMINE DEPARTURE, INTERMEDIATE OR ARRIVAL CONDITION. INTERMEDIATE SECTION IS REQUIRED TO BE COMPLETED IF ARRIVAL SECTION SHOWS IS JUST PRIOR TO BALLASTING WHICH INCLUDES THE EFFECT OF FREE SURFACE BUT NOT EFFECT OF WEIGHT OF THE BALLAST WHICH IS TO BE TAKEN ABOARD.

·					
TANK	TYPE	WEIGHT	V.C.G.	MOMENT	F.S.
	LIQUID				MOMENT
NO1 HFO T	F.O.	40	3.	120	100
NO2 HFO T P	F.O.	10	.02		1381
NO2 HFO T S	F.O.	10	.02		1381
NO3 HFO T P	F.O.	10	.05	1	296
NO3 HFO T S	F.O.	40	.21	8	296
NO4 HFO P(LS)	F.O.	5	.05		169
NO4 HFO S(LS)	F.O.	5	.05		169
NO2 HFO SETTL	F.O.	15	11.61	174	21
NO2 HFO SERV	F.O.	15	11.66	175	18
NO1 HFO SERV	F.O.	7	11.33	79	11
NO1 HFO SETTL	F.O.	7	11.26	79	10
NO1 HFO OVRFL	F.O.	2	13.85	28	9
MDO STOR P	D.O.	55	.81	45	130
MDO STOR S	D.O.	55	.81	45	130
MDO SERV	D.O.	11	8.41	92	5
MDO SETTL P	D.O.	9	7.74	70	15
FWI P	F.W.	45	12.28	552	36
FWI S	F.W.	100	12.41	1241	92
DISTILL W TK	F.W.	5	11.16	56	16
COOLING	F.W.	20	4.3	86	156
F.P.TK	B.W.	2	.05		44
NO1 BWT P	B.W.	4	.02		487
NO1 BWT S	B.W.	4	.02		487
NO2 DBWT P	B.W.	3	.01		98
NO2 DBWT S	B.W.	3	.01		98
NO2 TBWT P	B.W.	1	10.78	11	
NO2 TBWT S	B.W.	1	10.78	11	
NO3 DBWT P	B.W.	552	1.04	574	
NO3 DBWT S	B.W.	552	1.04	574	
NO3 TBWT P	B.W.	1	10.78	11	
NO3 TBWT S	B.W.	1	10.78	11	
NO4 BWT P	B.W.	635	7.44	4724	
NO4 BWT S	B.W.	635	7.44	4724	
NO5 DBWT P	B.W.	4	.02		81
NO5 DBWT S	B.W.	4	.02		81

Continue ...

FUEL AND WATER CALCULATION

PART II (continued)

TANK	TYPE	WEIGHT	V.C.G.	MOMENT	F.S.
	LIQUID				MOMENT
NO5 TBWT P	B.W.	1	10.78	11	
NO5 TBWT S	B.W.	1	10.78	11	
NO6 BWT P	B.W.	686	6.3	4320	
NO6 BWT S	B.W.	686	6.3	4320	
NO7 DBWT P	B.W.	3	.01		487
NO7 DBWT S	B.W.	3	.01		487
APT	B.W.	1	7.05	7	25

6817	22159	4249	TOTALS LIQUIDS
	287018	34741	SHIP AND CARGO
	309177	38989	GRAND TOTALS DISPLACEMENT
		7.930	KG
		0.175	FREE SURFACE CORR.(+)
		10.001	KM
		8.105	KGv
		1.897	GM
		0.300	REQUIRED MINIMUM GM
		NOTES	

(1) FREE SURFACE CORR. = <u>SUM OF FREE SURFACE INERTIA MOMENTS</u> DISPLACEMENT

(THIS CORRECTION MUST BE APPLIED TO ALL SHIPS.)

PART III					
		VOLUMETRIC		GRAIN	
	STOW-	GRAIN	HEELING	S.F.	HEELING
COMPARTMENT	AGE	DEPTH	MOMENT	(M^3/MT)	MOMENT
NAME	(1)	(M)	(M^4)	(2)	(M.TM.)
NO1 C.HOLD	PF	8.16	4777	1.203	3969
NO2 C.HOLD	PF	14.50	374	1.203	311
NO3 C.HOLD	PF	14.50	374	1.203	311
NO4 C.HOLD	PF	7.11	7945	1.203	6601
NO5 C.HOLD	PF	14.50	374	1.203	311
NO6 C.HOLD	PF	7.49	6482	1.203	5386
NO1 ON HATCH		0.00	0		0
NO2 ON HATCH		0.00	0		0
NO3 ON HATCH		0.00	0		0
NO4 ON HATCH		0.00	0		0
NO5 ON HATCH		0.00	0		0
NO6 ON HATCH		0.00	0		0
			20325		16889

STABILITY SUMMARY

(1) UNDER STOWAGE INDICATE "F" FOR FILLED COMPARTMENTS,

- 'F-UT' FOR FILLED COMPARTMENTS UNTRIMMED,
- 'PF' FOR PARTLY FILLED COMPARTMENTS,
- 'SEC' FOR SECURED OR OVERSTOWED COMPARTMENTS.
- (2) THE STOWAGE FACTOR USED IN PART III SHALL NOT EXCEED THE VOLUME PER UNIT WEIGHT (TEST WEIGHT) OF THE GRAIN. IF STOWAGE FACTOR IS SAME IN ALL COMPARTMENTS, DIVIDE TOTAL VOLUMETRIC HEELING MOMENT BY STOWAGE FACTOR OR MULTIPLY BY DENSITY TO OBTAIN GRAIN HEELING MOMENT. IF STOWAGE FACTOR VARIES, OBTAIN GRAIN HEELING MOMENT FOR EACH COMPARTMENT.

FOR VESSELS APPROVED UNDER:

REGULATION 4, CHAPTER VI, SOLAS 1974 or REGULATION 4, IMCO RESOLUTION A.264(VIII),SOLAS 1960 or REGULATION 4, IMCO RESOLUTION A.184(VI),SOLAS 1960

DISPLACEMENT (MT)	38989
KGv (M)	8.105
TOTAL GRAIN HEELING MOMENT (MT-M)	16889
MAXIMUM ALLOWABLE HEELING MOMENT (MT-M)	17344

10.5.5- ARRIVAL CONDITION WITH MINIMUM BUNKERS WHILE DEBALLASTING

A- WEIGHT DISTRIBUTION, INTACT STABILITY PARAMETERS

								05 - 03	- 2	10:54:	01 Page:	1
Seau	star Dangitu		NDITION	I PROJE	CT N.	0. TO LOME 1	while deball	lasting	60	ING		
Jean	ater pensite	y .	1.025 1	11/11 5		50101	igen condici					
						DISPLACEME	NT SUMMARY					
	I	TEM		WEIG	HT	L.C.G.	V.C.G.	T.C.G		F.S.MT.	GRAIN MT	
				(T)		(M)	(M)	(M)		(T-M)	(T-M)	
	GRAIN BULK	CARGO	С	2620	0.00	98.68	7.66	0	.00		16889	
	TOTAL C A	RGO		2620	0.00	98.68	7.66	0	.00		16889	
	FUEL OIL			16	6.00	78.47	4.00	-2	.79	3863		
	DIESEL OIL			13	0.00	29.33	1.94	-1	.06	280		
	LUB OIL				0.00	0.00	0.00	0	.00	0		
	FRESH WATE	R		17	0.00	1.10	11.38	-1	.90	299		
	WATER BALL	AST		188	7.00	74.62	2.36	0	.00	8135		
	MISC ITEM	S			0.00	0.00	0.00	0	.00	0		
	DEAD	VEIGHI	:	2855	3.00	96.07	7.29	-0	.03	12577	16889	
	LIGHT	ISHIP		854	0.71	81.46	10.10	0	.00	10577	1 6000	
	DISPI	LACEME	.N 1	3709	3./1	92.71	7.93	-0	.02	12577	16889	
				TRIM -	DRAF	TS				STABI	LITY	
Dr	aft at LCF	=	9	.84 M	MCT	(tm/cm) =	563	.7	KM	T =	9.96	М
LC	B from AP	=	92	.71 M	TRIN	1 by STERN =	-0.	44 M	KG	(solid)=	7.93	М
LC	G from AP	=	92	.71 M	LCF	from AP =	86.	97 M	F	S Cor =	0.34	м
AI	R DRAFT	=	33	.36 M	Drai	t Fwd =	9.	62 M	GM	(solid)=	2.03	M
PR	OPELLER IMM	R=	16	9.8 %	Draf	t Aft =	10.	06 M	KG	(fluid)=	8.27	M
AN	GLE OF HEEL	-	Stbd 0	.84°	Drai	ft Amid =	9.	84 M	GM	(fluid)=	1.69	М
	MINIMUM	KG' H MAXIN REQUIN	FOR CONI MUM PERM RED GM'	DITION = MITTED N FOR DA	= KG(KG' F M. ST	solid) + F : OR INTACT S: AB. (SOLAS	5 Cor = 7.93 TABILITY (A7 CH. II-1,RE)	8 + 0.34 749-WEATH 3.25 & R	HER) EG.2	= 8.27 M = 9.09 M 7 OF ICLL) =	= 0.86 M	
		ACTU	AL GRAIN	HEELIN	IG MO	MENT				= 16889	ТМ	
		ALLOW	VABLE GF	AIN HE	ELING	MOMENT (SO	LAS 74)			= 14825	ТМ	
		MAX S MAX E	S.F. PEF S.M. PEF	CENTAGE CENTAGE	с то с то	ALLOWABLE = ALLOWABLE =	63 % AT FF 76 % AT FF	AME 188 AME 182				
		WAF	RNIN	G : STA	ABILI	TY CRITERIA	ARE NOT SAT	ISFIED :	IN T	HIS CONDITIC	N	
	- M U T. T T	LOA	D									

					05 - 0	3 - 2018	10:	54:01 Pa	age: 2
CON	IDITION PROJEC	T N.O. '	TO LOME	while deba	llasting	T			-
Seawater Density : 1	.025 MT/M^3		Str	ength Condit	ion : S	, EA GOING	;		
		DE2	ADWEIGH	T BREAKDOWI	N				
GRAIN CARGO IN BU	JLK								
	TYPE OF	S.G.	olo	WEIGHT	VCG	LCG	TCG	COND.	G.H.M
CARGO SPACE	CARGO	CF/MT	TOT	in Tonnes	(M)	(M)	(M)		(T-M)
NO1 C.HOLD	GRAIN1	42.500	62	2400.00	5.90	157.11	0.0	SLACK	3969
NO2 C.HOLD	GRAIN1	42.500	100	6377.50	8.43	134.48	0.0	UNTRM	311
NO3 C.HOLD	GRAIN1	42.500	100	6149.00	8.49	108.66	0.0	UNTRM	311
NO4 C.HOLD	GRAIN1	42.500	54	2800.00	5.38	83.80	0.0	0 SLACK	6601
NO5 C.HOLD	GRAIN1	42.500	100	6146.50	8.49	59.05	0.0	UNTRM	311
NO6 C.HOLD	GRAIN1	42.500	53	2327.00	5.74	36.46	0.0	0 SLACK	5386
ΤΟΤΑ	L GRAIN			26200.00	7.66	98.68	0.0	D	16889
	S.G.	ę		WEIGHT	VCG	I	CG	TCG	F.S.M.
- OTHER ITEMS -	T/M^3	TOT	:	in Tonnes	(M)	(M)	(M)	(T-M)
FUEL OIL T	ANKS								
NO1 HFO T	0.980		20	40.00	3	.00 1	.68.57	-0.05	100
NO2 HFO T P	0.980		3	10.00	0	.02	83.80	5.50	1381
NO2 HFO T S	0.980		3	10.00	0	.02	83.80	-5.50	1381
NO3 HFO T P	0.980		6	10.00	0	.05	63.80	4.00	296
NO3 HFO T S	0.980		23	40.00	0	.21	63.80	-4.00	296
NO4 HFO P(LS)	0.980		5	5.00	0	.05	50.60	4.00	169
NO4 HFO S(LS)	0.980		5	5.00	0	.05	50.60	-4.00	169
NO2 HFO SETTL	0.980		47	15.00	11	.61	15.81	-7.87	21
NO2 HFO SERV	0.980		50	15.00	11	.66	13.41	-7.76	18
NO1 HFO SERV	0.980		26	7.00	11	.33	11.02	-7.38	11
NO1 HFO SETTL	0.980		22	7.00	11	.26	8.24	-7.16	10
NOI HFO OVRFL	0.980	·	17	2.00	13	.85 1	68.90	-2.00	9
IOIAL P	OFF OI	L	,	Icto: Under	4 lined F	.00	/0.4/	-2.19	3003
DIESEL OIL	TANKS			ioce. <u>onder</u>	iineu r	<u>aei</u> dei	loces us	Se of maxi	num rom
MDO STOR P	0.850)	78	55.00	0	.81	32.42	-3.28	130
MDO STOR S	0.850		78	55.00	0	.81	32.42	3.28	130
MDO SERV	0.850		55	11.00	8	.41	10.39	-6.57	5
MDO SETTL P	0.850		22	9.00	7	.74	14.70	-7.24	15
TOTAL DI	ESEL O	IL		130.00	1	.94	29.33	-1.06	280
			1	Note: Under	lined F	SM der	notes us	e of maxim	mum FSM
MULTILOA	D								

125

					05 - 03 -	2018 10	:54:01 P	age: 3
, Seawater Density	CONDITI : 1.025	ION PROJECT 5 MT/M^3	N.O. TO L	OME while debal Strength Condit	llasting ion : SEA (GOING		
		S.G.	ę	WEIGHT	VCG	LCG	TCG	F.S.M.
- OTHER ITEMS	-	T/M^3	TOT	in Tonnes	(M)	(M)	(M)	(T-M)
LUB OIL T	ANK	s						
NO1 CYL O STR		0.900	0	0.00	0.00	25.00	4.03	
NO2 CYL O STR		0.900	0	0.00	0.00	25.00	1.00	
M/E LO STR		0.900	0	0.00	0.00	15.82	7.26	
M/E LO SET		0.900	0	0.00	0.00	13.43	7.05	
G/E LO STR		0.900	0	0.00	0.00	11.09	6.23	
G/E LO SET		0.900	0	0.00	0.00	9.03	6.65	
M/E LO SUMP		0.900	0	0.00	0.00	18.20	0.00	
TOTAL	ΓU	B OIL		0.00	0.00	0.00	0.00	
				Note: Under	lined FSM	denotes (ise of maxi	mum FSM
FRESH WAT	ER	TANKS						
FWT P		1.000	59	45.00	12.28	-1.09	5.87	3
FWI S		1.000	68	100.00	12.41	0.94	-6.18	9
DISTILL W TK		1.000	11	5.00	11.16	2.43	6.07	1
COOLING		1.000	75	20.00	4.30	6.53	0.00	15
TOTAL F	RES	H WAT	ER	170.00	11.38	1.10	-1.90	29
	A D —							

				05 - 03 -	2018 10:	54:01 Pa	age: 4
COL	NDITION PROJEC	I N.O. TO I	OME while debal	lasting			
Seawater Density :	1.025 MT/M^3		Strength Condit	ion : SEA (GOING		
	S.G.	8	WEIGHT	VCG	LCG	TCG	F.S.M.
- OTHER ITEMS -	T/M^3	TOT	in Tonnes	(M)	(M)	(M)	(T-M)
BALLAST WA	TER TAN	KS					
F.P.TK	1.025	0	2.00	0.05	171.63	-0.01	44
NO1 BWT P	1.025	0	4.00	0.02	155.87	4.07	487
NO1 BWT S	1.025	0	4.00	0.02	155.87	-4.07	487
NO2 DBWT P	1.025	1	3.00	0.01	134.40	8.70	98
NO2 DBWT S	1.025	1	3.00	0.01	134.40	-8.70	98
NO2 TBWT P	1.025	1	1.00	10.78	135.00	11.73	0
NO2 TBWT S	1.025	1	1.00	10.78	135.00	-11.73	0
NO3 DBWT P	1.025	49	270.00	0.50	108.60	6.21	2826
NO3 DBWT S	1.025	49	270.00	0.50	108.60	-6.21	2826
NO3 TEWT P	1.025	1	1.00	10.78	108.60	11.73	0
NO3 TEWT S	1.025	1	1.00	10.78	108.60	-11.73	0
NO4 BWI P	1.025	50	315.00	3.84	83.80	10.91	13
NO4 BWI 5	1.025	50	315.00	3.84	83.80	-10.91	13
NOS DEWI P	1.025	2	4.00	0.02	61.59	0.00	01
NOS DEWI S	1.025	1	4.00	10.79	59.00	-0.50	
NOS TEWT S	1.025	1	1.00	10.78	59.00	-11 71	0
NO6 BWT P	1.025	50	340.00	2.49	36.84	7.63	41
NO6 BWT S	1.025	50	340.00	2.49	36.84	-7.63	41
NO7 DBWT P	1.025	1	3.00	0.01	135.00	4.00	487
NO7 DBWT S	1.025	1	3.00	0.01	135.00	-4.00	487
APT	1.025	0	1.00	7.05	4.99	0.00	25
NO4 C.HOLD/WB	1.025	0	0.00	0.00	83.80	0.00	0
TOTAL BAL	LAST WA	TER	1887.00	2.36	74.62	0.00	8135
			Note: Under	lined FSM	denotes u	se of maxi	mum FSM
	n						

		CONDI	TION'S KG' = 8	.27 METERS	
		CROSS	CURVES KG = 0	.00 METERS	
		RIGHTING	ARM $G'Z = GZ$	- GG' SIN (0)	
	θ	SIN(0)	GZ	GG' SIN (0)	G'Z
	10.0	0.174	1.743	1.437	0.306
	20.0	0.342	3.513	2.830	0.683
	30.0	0.500	5.200	4.137	1.063
	40.0	0.643	6.707	5.318	1.389
	50.0	0.766	7.833	6.338	1.495
	60.0	0.866	8.527	7.165	1.362
	70.0	0.940	8.807	7.775	5 1.032
C773	DTITTY	CRITERIA (NRAC)	3.07		DECUIDED
517	ADILIII	CRIIERIA (A/49)	ACI	UAL VALUE	REQUIRED
AREA FROM	10 TO 3	0 DEG		0.265 M RAD	0.055 M R
AREA FROM	1 0 10 4 1 20 TO	40.0 DEG		0.480 M RAD	0.09 M R
DIGHTING	1 30 10 1 DM 1T	40.0 DEG		1.063 M	0.03 M
MAX RIGHT	TNG ARM	1	1.5	16 M AT 49 DEG	AT ANGLE >=25 DI
INIT MET	ACENTRI	C HEIGHT		1.69 M	0.15 M
GR	AIN STAN	B.CRIT. (SOLAS74)	ACT	UAL VALUE	REQUIRED
INIT MET	ACENTRI	C HEIGHT		1.69 M	0.30
ANGLE OF	HEEL			13.3 DEG	12 DEG. or DK ED
					IMMERS ANG = 21.9 D
		I.M.O 6	NEATHER CRITERI	A Res.A.749	
Th(DE)		ANGLE OF UPPER DE	CK IMMERSION		: 21.88 DEG
Th (DE) *.8	0				: 17.50 DEG
Th(F)		ANGLE OF FLOODING			: 45.43 DEG
A		LATERAL WINDAGE A	REA (SHIP UPRIC	GHT)	: 1770 M2
H		WIND PRESSURE LEV	ER FROM MID DRA	AFT	: 11.804 M
DW		STEADY WIND HEELI	NG ARM		: 0.029 M
Th (0)		RESULTANT ANGLE O	F EQUILIBRIUM		: 0.978 DEG
1w2=1.5*1	wl				: 0.043 M
Th(1)		ANGLE OF WINDWARD	ROLL DUE TO WA	AVE	: 21.08 DEG
Th(c)		ANGLE OF 2nd INTE	RCEPT OF GZ-cui	rve WITH 1w2	
Th(2)		MINIMUM OF Th(F)	or 50 deg or Th	1(C)	: 45 DEG
					: 0.134 M RAD
AREA A	NTS	• 1) Th(0) show1	d ha lass than	leder or 908 of	: U. 585 M KAD Th (DF)
AREA A AREA B	1110	. 1) 10(0) 50001	a pe ress chan	Area B	11(00)
AREA A AREA B REQUIREME		2) Ares A chow	10 De 1600 TRAN		

GZ CURVE

DEFLECTIONS (SF & BM)

			05 - 03 - 2	018 11:27:01
CASE 1 :	SEA GOING			
	Max. All	. SF (MT)	Max. All	. BM (TxM)
Frame	(+)	(-)	Sagging	Hogging
-6	1019	-1019	-5097	5097
35	1733	-1733	-15291	32620
60	3109	-3109	-76453	69317
93	3150	-3129	-109276	86850
122	3109	-3109	-109276	86850
155	3109	-3150	-109276	86850
188	3109	-3109	-42813	38838
213	1600	-1600	-8461	8655
CASE 2 :	IN HARBOR			
	Max. All	. SF (MT)	Max. All	BM (TxM)
Frame	(+)	(-)	Sagging	Hogging
-6	1233	-1233	-12915	12640
35	2803	-2803	-53007	69011
60	4679	-4679	-145607	136086
93	4343	-4343	-219429	193191
122	4302	-4302	-219429	193191
155	4720	-4720	-209062	183180
188	4811	-4811	-95382	89592
213	2253	-2253	-26697	26269
CASE 3 .	FLOODING CONDITION			
	Mar All	SE (MT)	May 111	PM (T+M)
Frame	(+)	. Jr (rii) (-)	Sagging	Hogging
	1060	-1060		6769
25	1906	-2171	-23649	32620
60	3415	-4353	-88746	80530
93	3415	-3313	-134027	103976
122	3364	-3293	-134027	103976
155	3822	-3394	-129460	103976
188	3364	-3293	-54434	49949
213	1733	-1733	-12232	12232
TILO	A D			

		05 - 03 - 2018 10:54:01	Page: 7
	CONDITION PROJECT N.O. TO LOME	while deballasting	
Seawater Density	: 1.025 MT/M^3 Stre	ngth Condition : SEA GOING	
++	+ S.F. ''' S.F. Max.All	*** B.M B.M. Max.All	
FRM S.F.	= = = Bulkhead Correction	(+ HOG, - SAG)	B.M. FRM
AE 0	· · · · · · · · · · · · · · · · · · ·	+ ;	0 AE
3 156	*	+ •	641 3
8 176	- *	± '	1237 8
16 97	•	x . '	2207 16
19 -2 23 -172	· · + 1	* - *	2399 19
27 -364	' +. *	1	1472 27
30 -517 35 -886	+ *		493 30 -2180 35
37 -902		· · · · ·	-3558 37
41 -959 45 -1022	· +. *		-9495 45
48 -1070	' + *		-11926 48
55 -1251	· + *		-18226 55
60 -1385'	+ * _ *	*	-23367 60
66 -1008 '	. + *		-28748 66
70 -888 .' 74 -765	× * +		-31677 70
77 -670.	* +		-35860 77
81 -543. ' 84 -446. '	* + * +		-37696 81 -38805 84
88 -316. '	* +	· · · · ·	-39920 88
93 -23! 95 -100.'	* +	'	-40467 93 -40513 95
99 -286. '	* +	· · · ·	-41025 99
102 -423	· * +		-41797 102
110 -790.	* +	: .	-45467 110
117 -1113.	* +		-50611 117
122 -1307!	+	'	-55320 122
128 -883.	* +		-60190 128
131 -751. ' 135 -571	* +	; '	-62072 131 -64082 135
138 -435.	• • +		-65211 138
142 -250. ' 146 -63. '	* +		-66202 142 -66599 146
149 78. '	*	+ . ' .	-66503 149
155 589! 157 671 '.	*	+ '	-64744 155 -63683 157
160 792 .	*	+	-61849 160
167 1063 '	*	+ . '	-56467 167
172 1245 175 1350 '	• • * *	+ . '	-51721 172
178 1451 '	- 	+.	-45089 178
182 1582 ' 186 1761 '	- * - *	. + '	-40131 182
188 1944'			-31661 188
193 1697 ' 196 1544	*	. + '	-24250 193
200 1344	*	+ '	-15557 200
204 1163 207 1042	*	· + ·	-11441 204 -8718 207
213 912	*	+	-4678 213
216 700 221 382		. + .	-3168 216 -1448 221
226 164	*	+. :	-530 226
FE 0	· · · · · · · · · · · · · · · · · · ·	- -	-142 231 0 FE
	MAX S.F. PERCENTAGE TO ALL MAX B.M. PERCENTAGE TO ALL	OWABLE = 63 % AT FRAME 188 OWABLE = 76 % AT FRAME 182	
MULTII.	0 A D		

HOLD MASS TABLES

				0	5 - 03 - 201	10:54:0)1 Page: 8	8
CONDITIO	N PROJECT	I N.O. TO LO	ME while	deballa	sting			
Seawater Density : 1.025 MT/M^3 Strength Condition : SEA GOING								
LOCAL LOADING DIAGRAMS ANALYSIS								
DIAGRAM	MEAN	CARGO	F. O.	W. B.	SUM OF	MIN REQ.	MAX. PERM.]
Seagoing	DRAFT	MASS (MT)	WT (MT)	WT (MT)	MASS (MT)	MASS (MT)	MASS (MT)	
NO1 C.HOLD	9.67	2400	0	0	2400	479	6990	OK
NO1&2 C.HOLDS	9.70	8778	0	0	8778	2089	11127	OK
NO2 C.HOLD	9.72	6378	0	0	6378	0	6465	OK
NO2&3 C.HOLDS	9.76	12527	0	0	12527	2439	13865	OK
NO3 C.HOLD	9.79	6149	0	0	6149	706	11060	OK
NO3&4 C.HOLDS	9.82	8949	0	0	8949	2414	13642	OK
NO4 C.HOLD	9.85	2800	0	0	2800	0	6241	OK
NO4&5 C.HOLDS	9.88	8947	0	0	8947	2488	13639	OK
NO5 C.HOLD	9.91	6147	0	0	6147	782	12632	OK
NO5&6 C.HOLDS	9.94	8474	0	0	8474	2371	11470	OK
NO6 C.HOLD	9.97	2327	0	0	2327	0	4073	OK

GRAIN STABILITY, SEA GOING CRITERION

NATIONAL CARGO BUREAU, INC.

GRAIN STABILITY CALCULATION

			YEAR BUILT A	T
		NET TONNAGE	OFFICIAL NO.	
GENT				
RAIN LOADING B	OOKLET APPROVED B	<i>[</i>		
RAWING NO.		DATE OF APPROVAL		
APPLICABLE REGU	LATIONS			
DDENDUM FOR UN	TRIMMED ENDS APPR	OVED BY		
RAWING NO.		DATE OF APPROVAL		
OADING PORT				
SUNKERING PORTS				
DISCHARGE PORT_				
TEAMING DISTAN	CE	MILES PER DAY	TIME	
DAILY CONSUMPTION: FUEL		DIESEL	WATER	
	DISPLACEMENT	DEADWEIGHT	DRAFT	FREEBOARD
INTER	38544	30004	10.199	4.445
UMMER	39440	30899	10.416	4.228
ROPICAL	40337	31796	10.633	4.011
RESH WATER ALL	OWANCE 0,239 TPC	(AT SUMMER DRAFT) 41.297		
HIS IS TO CERT	IFY THAT:			
1. THIS CAI	CULATION IS PREPA	RED IN ACCORDANCE WITH THE	REQUIREMENTS	
OF THE	VESSEL'S GRAIN LO	ADING BOOKLET AND THE APPLIC	CABLE GRAIN	
REGULAT	IONS			
2. THE STAE	BILITY OF THE VESS	EL WILL BE MAINTAINED THROU	GHOUT THE	
VOYAGE	IN ACCORDANCE WIT	H THIS CALCULATION.		
ALCULATION PRE	PARED BY:			
				MASTER
		E	XAMINED:	
			N. C	.B. SURVEYOR

NOTE: ORIGINAL STABILITY CALCULATION AND GRAIN ARRANGEMENT PLAN TO BE SUMITTED TO THE N.C.B. SURVEYOR. ALL TONNAGES USED IN THESE CALCULATIONS SHALL BE SHOWN IN THE SAME UNITS AS USED IN THE GRAIN LOADING BOOKLET.

COMPARTMENT	CARGO	S.F.	GRAIN	CUBICS			
NAME	TYPE	(M^3/MT)	100%	ACTUAL	WEIGHT	V.C.G.	MOMENT
NO1 C.HOLD	GRAIN1	1.203	4663	2888	2400	5.90	14160
NO2 C.HOLD	GRAIN1	1.203	7675	7675	6378	8.43	53762
NO3 C.HOLD	GRAIN1	1.203	7400	7400	6149	8.49	52205
NO4 C.HOLD	GRAIN1	1.203	6242	3370	2800	5.38	15075
NO5 C.HOLD	GRAIN1	1.203	7397	7397	6147	8.49	52184
NO6 C.HOLD	GRAIN1	1.203	5258	2800	2327	5.74	13363
NO1 ON HATCH			1201	0	0	0.00	0
NO2 ON HATCH			2869	0	0	0.00	0
NO3 ON HATCH			2869	0	0	0.00	0
NO4 ON HATCH			2504	0	0	0.00	0
NO5 ON HATCH			2869	0	0	0.00	0
NO6 ON HATCH			1997	0	0	0.00	0

SHIP	AND	CARGO	CALCULATION

THIS CALCULATION IS	CARGO TOTALS	26200	7.66	200748
PREPARED IN:	LIGHT SHIP	8541	10.10	86270
[] ENGLISH UNITS	STORES	0	0.00	0
[x] METRIC UNITS				
	SHIP AND CARGO TOTALS	34741		287018

CARGO PLAN: INDICATE HOLDS, TWEEN DECKS, ENGINE SPACES, FITTINGS, STOWAGE,

TONNAGES, ETC.

PART I

PART II

IN THIS PART YOU CAN EXAMINE DEPARTURE, INTERMEDIATE OR ARRIVAL CONDITION. INTERMEDIATE SECTION IS REQUIRED TO BE COMPLETED IF ARRIVAL SECTION SHOWS IS JUST PRIOR TO BALLASTING WHICH INCLUDES THE EFFECT OF FREE SURFACE BUT NOT EFFECT OF WEIGHT OF THE BALLAST WHICH IS TO BE TAKEN ABOARD.

· · · · · · · · · · · · · · · · · · ·					
ΤΑΝΚ	TYPE	WEIGHT	V.C.G.	MOMENT	F.S.
	LIQUID				MOMENT
NO1 HFO T	F.O.	40	3.	120	100
NO2 HFO T P	F.O.	10	.02		1381
NO2 HFO T S	F.O.	10	.02		1381
NO3 HFO T P	F.O.	10	.05	1	296
NO3 HFO T S	F.O.	40	.21	8	296
NO4 HFO P(LS)	F.O.	5	.05		169
NO4 HFO S(LS)	F.O.	5	.05		169
NO2 HFO SETTL	F.O.	15	11.61	174	21
NO2 HFO SERV	F.O.	15	11.66	175	18
NO1 HFO SERV	F.O.	7	11.33	79	11
NO1 HFO SETTL	F.O.	7	11.26	79	10
NO1 HFO OVRFL	F.O.	2	13.85	28	9
MDO STOR P	D.O.	55	.81	45	130
MDO STOR S	D.O.	55	.81	45	130
MDO SERV	D.O.	11	8.41	92	5
MDO SETTL P	D.O.	9	7.74	70	15
FWT P	F.W.	45	12.28	552	36
FWT S	F.W.	100	12.41	1241	92
DISTILL W TK	F.W.	5	11.16	56	16
COOLING	F.W.	20	4.3	86	156
F.P.TK	B.W.	2	.05		44
NO1 BWT P	B.W.	4	.02		487
NO1 BWT S	B.W.	4	.02		487
NO2 DBWT P	B.W.	3	.01		98
NO2 DBWT S	B.W.	3	.01		98
NO2 TBWT P	B.W.	1	10.78	11	
NO2 TBWT S	B.W.	1	10.78	11	
NO3 DBWT P	B.W.	270	.5	134	2826
NO3 DBWT S	B.W.	270	.5	134	2826
NO3 TEWT P	B.W.	1	10.78	11	
NO3 TEWT S	B.W.	1	10.78	11	
NO4 BWT P	B.W.	315	3.84	1211	13
NO4 BWT S	B.W.	315	3.84	1211	13
NO5 DBWT P	B.W.	4	.02		81
NO5 DBWT S	B.W.	4	.02		81

Continue ...

PART II (continued)

TANK	TYPE	WEIGHT	V.C.G.	MOMENT	F.S.
	LIQUID				MOMENT
NO5 TBWT P	B.W.	1	10.78	11	
NO5 TBWT S	B.W.	1	10.78	11	
NO6 BWT P	B.W.	340	2.49	845	41
NO6 BWT S	B.W.	340	2.49	845	41
NO7 DBWT P	B.W.	3	.01		487
NO7 DBWT S	B.W.	3	.01		487
APT	B.W.	1	7.05	7	25

12577	7304	2353	TOTALS LIQUIDS
	287018	34741	SHIP AND CARGO
	294322	37094	GRAND TOTALS DISPLACEMENT
		7.935	KG
		0.339	FREE SURFACE CORR.(+)
		9.963	KM
		8.274	KGv
		1.689	GM
		0.300	REQUIRED MINIMUM GM

NOTES

(1) FREE SURFACE CORR. = <u>SUM OF FREE SURFACE INERTIA MOMENTS</u> DISPLACEMENT

(THIS CORRECTION MUST BE APPLIED TO ALL SHIPS.)

PART III					
		VOLUMETRIC		GRAIN	
	STOW-	GRAIN	HEELING	S.F.	HEELING
COMPARTMENT	AGE	DEPTH	MOMENT	(M^3/MT)	MOMENT
NAME	(1)	(M)	(M^4)	(2)	(M.TM.)
NO1 C.HOLD	PF	8.16	4777	1.203	3969
NO2 C.HOLD	PF	14.50	374	1.203	311
NO3 C.HOLD	PF	14.50	374	1.203	311
NO4 C.HOLD	PF	7.11	7945	1.203	6601
NO5 C.HOLD	PF	14.50	374	1.203	311
NO6 C.HOLD	PF	7.49	6482	1.203	5386
NO1 ON HATCH		0.00	0		0
NO2 ON HATCH		0.00	0		0
NO3 ON HATCH		0.00	0		0
NO4 ON HATCH		0.00	0		0
NO5 ON HATCH		0.00	0		0
NO6 ON HATCH		0.00	0		0
			20325		16889

STABILITY SUMMARY

(1) UNDER STOWAGE INDICATE "F" FOR FILLED COMPARTMENTS,

- 'F-UT' FOR FILLED COMPARTMENTS UNTRIMMED,
- 'PF' FOR PARTLY FILLED COMPARTMENTS,
- 'SEC' FOR SECURED OR OVERSTOWED COMPARTMENTS.
- (2) THE STOWAGE FACTOR USED IN PART III SHALL NOT EXCEED THE VOLUME PER UNIT WEIGHT (TEST WEIGHT) OF THE GRAIN. IF STOWAGE FACTOR IS SAME IN ALL COMPARTMENTS, DIVIDE TOTAL VOLUMETRIC HEELING MOMENT BY STOWAGE FACTOR OR MULTIPLY BY DENSITY TO OBTAIN GRAIN HEELING MOMENT. IF STOWAGE FACTOR VARIES, OBTAIN GRAIN HEELING MOMENT FOR EACH COMPARTMENT.

FOR VESSELS APPROVED UNDER:

REGULATION 4, CHAPTER VI, SOLAS 1974 or REGULATION 4, IMCO RESOLUTION A.264(VIII),SOLAS 1960 or REGULATION 4, IMCO RESOLUTION A.184(VI),SOLAS 1960

DISPLACEMENT (MT)	37094
KGv (M)	8.274
TOTAL GRAIN HEELING MOMENT (MT-M)	16889
MAXIMUM ALLOWABLE HEELING MOMENT (MT-M)	14825

10.5.6- ARRIVAL CONDITION WITH MINIMUM BUNKERS WITHOUT BALLAST

A- WEIGHT DISTRIBUTION, INTACT STABILITY PARAMETERS

							05 - 03	- 2	018 11:00:	01 Page:	1
		NDITI	ON PROJE	CT N.	O. TO LOME						
Seawa	ater Densit	y : 1.025	MT/M^3		Stren	igth Conditi	on : SEA	A GO	ING		
	DISPLACEMENT SUMMARY										
	ITEM WEIGHT L.C.G. V.C.G. T.C.G. F.S.MI. GRAIN MI										
			(T		(M)	(M)	(M)		(T-M)	(T-M)	
	GRAIN BULK	CARGO	2620	0.00	98.68	7.66	0	0.00		16889	
	TOTAL C A	RGO	2620	0.00	98.68	7.66	0	0.00		16889	
	FUEL OIL		16	6.00	78.47	4.00	-2	2.79	3863		
	DIESEL OIL		13	0.00	29.33	1.94	-1	1.06	280		
	LUB OIL	_		0.00	0.00	0.00	0	0.00	0		
	FRESH WATE	R	17	0.00	1.10	11.38	-1	1.90	299		
	WATER BALL	AST		5.00	101.06	1.14		0.00	6630		
	DEVD	UFICHT	2673	1 00	97.60	7.62	-0	0.00	11072	16999	
	LIGH	TSHIP	854	0.71	81.46	10.10		0.00			
	DISP	LACEMENT	3527	1.71	93.69	8.22	-(0.03	11072	16889	
			TRIM -	DRAF	TS				STABI	ILITY	
Dr	aft at LCF	=	9.40 M	MCT	(tm/cm) =	555	.2	KM	T =	9.94	M
LC	B Irom AP		3.69 M	IRI	M EVEN KEEL=		00 M	KG	(SOIIQ)=	0.22	M
20	B DRAFT		3.69 M	Dra	ft Fud =	٥/.	44 m	GM	(solid)=	1 72	M
PR	OPELLER IMM	 R= 1	58.7 %	Dra	ft Aft =	9.40 M KG			(fluid)=	8.53	м
AN	GLE OF HEEL	, = Stbd	1.06°	Dra	ft Amid =	9.	9.40 M GM		(fluid)=	1.41	M
		KG' FOR CO	NDITION RMITTED	= KG(KG' F	(solid) + F S FOR INTACT ST	5 Cor = 8.22 TABILITY (A7	2 + 0.31 749-WEAT	HER)	= 8.53 M = 9.08 M		
	MINIMUM	REQUIRED GM	FOR DF	M. 51	TAB. (SOLAS	CH. II-1,RE	G.25 & R	EG.2	27 OF ICLL) =	= 0.86 M	
		ACTUAL GRA	IN HEELI	NG MC	MENT				= 16889	тм	
		ALLOWABLE	GRAIN HE	ELING	MOMENT (SO	LAS 74)			= 11938	ТМ	
		MAX S.F. P	ERCENTAG	е то	ALLOWABLE =	58 % AT FF	AME 188				
		MAX B.M. P	ERCENTAG	E TO	ALLOWABLE =	71 % AT FF	RAME 182				
		WARNI	NG:ST	ABILI	TY CRITERIA	ARE NOT SAT	ISFIED	IN T	HIS CONDITIC	DN	
	MULTI	LOAD -									

						05 - 0	3 - 2018	8 11:	00:01 Pa	age: 2
	CONDIT	ION PROJEC	CT N.O.	TO LOME						
Seawater Density	: 1.02	5 MT/M^3		Str	ength Condi	tion : S	EA GOING	3		
DEADWEIGHT BREAKDOWN										
GRAIN CARGO IN	BULK	WDE OF			URICUT	LICC.	1.00		COND	C 7 M
CARGO SPACE	1.	CARGO	S.G. CF/MT	тот	in Tonnes	(M)	(M)	(M)	COND.	(T-M)
NOL C HOLD	CP7	TNI	42 500	62	2400.00	5 90	157 11	,	OSTACK	3060
NOI C.HOLD	CDA		42.500	100	2400.00	9.43	137.11	0.0	O UNITEM	3969
NO3 C HOLD	GRA		42.500	100	6149 00	8 49	108 66	0.0	0 UNTEM	311
NO4 C.HOLD	GRA	INI	42.500	54	2800.00	5.38	83.80	0.0	0 SLACK	6601
NO5 C.HOLD	GRA	IN1	42.500	100	6146.50	8.49	59.05	0.0	0 UNTRM	311
NO6 C.HOLD	GRA	IN1	42.500	53	2327.00	5.74	36.46	0.0	0 SLACK	5386
ТОТ	AL	GRAIN			26200.00	7.66	98.68	0.0	0	16889
					11					
		S.G.	8		WEIGHT	VCG	L	CG	TCG	F.S.M.
- OTHER ITEMS	-	T/M^3	TOT		in Tonnes	(M)	(M)	(M)	(T-M)
FUEL OIL	ΤΑΝ	КS								
NO1 HFO T		0.980)	20	40.00	3	.00 1	68.57	-0.05	100
NO2 HFO T P		0.980)	3	10.00	0	.02	83.80	5.50	1381
NO2 HFO T S		0.980	,	3	10.00	0	.02	83.80	-5.50	1381
NOS HEO T S		0.980	, ,	22	10.00		.05	63.00	4.00	290
NO4 HEO P(LS)		0.980	, ,	5	40.00	0	05	50 60	4 00	169
NO4 HFO S(LS)		0.980		5	5.00	0	.05	50.60	-4.00	169
NO2 HFO SETTL		0.980		47	15.00	11	.61	15.81	-7.87	21
NO2 HFO SERV		0.980)	50	15.00	11	.66	13.41	-7.76	18
NO1 HFO SERV		0.980)	26	7.00	11	.33	11.02	-7.38	11
NO1 HFO SETTL		0.980	0	22	7.00	11	.26	8.24	-7.16	10
NO1 HFO OVRFL		0.980)	17	2.00	13	.85 1	68.90	-2.00	9
TOTAL	FUI	EL OI	L		166.00	4	.00	78.47	-2.79	3863
DIESELOI	т. т	ANKS		1	Note: <u>Unde</u>	rlined F	SM der	notes us	se of maxi	mum FSM
MDO STOR P	- 1	0.850)	78	55.00	0	.81	32.42	-3.28	130
MDO STOR S		0.850		78	55.00	0	.81	32.42	3.28	130
MDO SERV		0.850)	55	11.00	8	.41	10.39	-6.57	5
MDO SETTL P 0.850)	22	9.00	7	.74	14.70	-7.24	15	
TOTALI		130.00	1	.94	29.33	-1.06	280			
				1	Note: <u>Under</u>	rlined F	SM der	notes us	se of maxi	mum FSM
N []]]]]	λ.Ρ.									

139

05 - 03 - 2018 11:00:01 Page: 3 CONDITION FROJECT N.O. TO LOME Seawater Density : 1.025 MT/M'3 Strength Condition : SEA GOING - 07HER ITEMS - T/M'3 TOT in Tonnes (M) (G) (G) TOG F.S.M. - 0.00 0.00 CONDITION FROJECT N.O. TO LOME Seawater Density : 1.025 MT/M'3 Strength Condition : SEA GOING - 0.01 I TANKS NOI CYL 0 STR 0.900 0.000 CONDITION FROJECT N.O. TO LOME Strength Condition : SEA GOING VCG LO GT TOT VCG LO GT CONDITION FROJECT N.O. TO LOME NOI CYL 0 STR 0.900 0.000 COLO 0.00 1.000 VIE LO STR 0.900 0.000 0.000 0.000 VIE LO STM 0.900 0.000 0.000 TO TAL LUB OIL Note: Underlined FSM denotes use of maximum F3M FWT F	OS - 03 - 2018 11:00:01 Page: 3 Seawater Density : 1.025 MT/M'3 Strength Condition : SEA GOING - OTHER ITEMS - T/M'3 TOT in Tonnes (M) (M) (M) (M) LU B 0.1 L T A N K S 0.00 0.00 0.00 25.00 4.03 NO2 CYL 0 STR 0.900 0 0.00 0.00 13.43 7.26 NVE LO STR 0.900 0 0.00 0.00 13.43 7.26 NVE LO STR 0.900 0 0.00 0.00 13.43 7.26 NVE LO STR 0.900 0 0.00 0.00 10.00 13.43 7.26 NVE LO STR 0.900 0 0.00 0.00 10.00 14.20 0.00 T O T A L U B O I L 0.900 0 0.00 0.00 0.00 0.00 T O T A L L U B O I L 0.900 12.28 -1.09 5.87 PHT P 1.000 15 5.00<	· · · · · · · · · · · · · · · · · · ·								
CONDITION PROJECT N.O. TO LOME Seawater Density 1.025 MT/M*3 Strength Condition : SEA GOING - OTHER ITEMS - T/M*3 TOT in Tonnes (H) (H) (H) (H) L U B 0 I L T A N K S 0.00 0.00 25.00 4.03 NOL CYL 0 STR 0.900 0 0.00 0.00 25.00 4.03 NO2 CYL 0 STR 0.900 0 0.00 0.00 13.43 7.05 N/E LO STR 0.900 0 0.00 0.00 11.09 6.23 G/E LO STR 0.900 0 0.00 0.00 10.00 10.00 YE LO STR 0.900 0 0.00 0.00 10.00 10.00 YE LO STR 0.900 0 0.00 0.00 0.00 10.00 YE LO STR 0.900 0 0.00 0.00 0.00 0.00 10.00 YE LO STR 0.900 0 0.00 0.00 0.00	CONDITION FROMECT N.O. TO LOME Seawater Density 1.025 MT/M'3 Strength Condition : SEA GOING - OTHER ITEMS - T/M'3 TOT in Tonnes (H) (H) (H) L U B 0 I L TANKS 0.500 0 0.00 0.00 25.00 4.03 NOL CLIO STR 0.500 0 0.00 0.00 25.00 4.03 NO2 CYL 0 STR 0.500 0 0.00 0.00 15.62 7.26 NVE LO STR 0.500 0 0.00 0.00 11.06 6.23 NVE LO STR 0.500 0 0.00 0.00 10.00 5.62 NVE LO STR 0.500 0 0.00 0.00 10.00 5.67 NVE LO STR 0.500 0 0.00 0.00 0.00 0.00 T O T A L L U B O I L 0.00 12.28 -1.09 5.67 FWT P 1.000 58 45.00 12.28 -1.09 5.67 DISTILL W TK 1.000	L L					05 - 03 -	2018 11	:00:01 P	age: 3
Stemater Density : 1.025 HT/H*3 Stempth Condition : SEA GOING - OTHER ITEMS - S.6. N NEIGHT VCG LCG TCG F.S.M. L U B OIL T ANKS 0.900 0 0.00 0.00 25.00 4.03 NO2 CYL 0 STR 0.900 0 0.00 0.00 25.00 4.03 NO2 CYL 0 STR 0.900 0 0.00 0.00 13.43 7.26 N/E LO STR 0.900 0 0.00 0.00 11.06 6.23 G/E LO STR 0.900 0 0.00 0.00 11.06 6.23 G/E LO STR 0.900 0 0.00 0.00 11.06 6.23 G/E LO STR 0.900 0 0.00 0.00 11.06 6.23 G/E LO STR 0.900 0 0.00 0.00 0.00 12.28 1.00 12.28 FR E S H WATER TANK S Note: Underlined FSM denotes use of maximum FSM GOLING 1	Sewater Density : 1.025 MI/M'3 Strength Condition : SEA GOING - OTHER ITEMS - LUB 0 IL TANKS T/M'3 TOT in Tonnes UG LCG TOG F.S.M NOL CYL 0 STR 0.900 0 0.00 0.00 25.00 4.03 NVE LO STR 0.900 0 0.00 0.00 15.82 7.26 NVE LO STR 0.900 0 0.00 0.00 15.82 7.26 NVE LO STR 0.900 0 0.00 0.00 16.33 7.05 G/E LO STR 0.900 0 0.00 0.00 11.08 6.23 G/E LO STR 0.900 0 0.00 0.00 10.00 10.820 0.00 T O T A L L U B O I L 0.00 0.00 0.00 0.00 0.00 T O T A L L U B O I L 0.00 11.28 -1.09 5.67 HY E 1.000 75 20.00 13.28 -0.00 0.00 T O T A L		CONDIT	ION PROJECT	г м.о. то 1	OME				
- OTHER ITEMS - S.G. T/M*3 NO MEIGHT IN Tonnes VCG (M) LCG (M) TCG (M) TCG (M)<	- OTHER ITEMS - S.G. Note WEIGHT VCG LOG TCG F.S. NO1 CVL 0 STR 0.900 0 0.00 0.00 25.00 4.03 NO2 CVL 0 STR 0.900 0 0.00 0.00 25.00 4.03 NO2 CVL 0 STR 0.900 0 0.00 0.00 11.00 11.00 N/E LO STR 0.900 0 0.00 0.00 13.43 7.05 G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 G/E LO STR 0.900 0 0.00 0.00 0.00 10.00 T O T A L L U B O I L 0.00 0.00 0.00 10.00 12.20 0.00 T O T A L L U B O I L 0.00 12.20 -1.09 5.07 FWT S 1.000 55 45.00 12.43 6.07 100 CODLING	Seawater Density	: 1.02	5 MT/M^3		Strength Condit	ion : SEA (GOING		
OTHER ITEMS - T./M*3 TOT IN TONNES WCG LCG TCG F.S.M. NOL CLIO STR 0.500 0 0.00 0.00 25.00 4.03 NO2 CYLO STR 0.500 0 0.00 0.00 25.00 4.03 NO2 CYLO STR 0.500 0 0.00 0.00 15.92 7.26 N/E LO STR 0.500 0 0.00 0.00 10.93 6.65 N/E LO STR 0.500 0 0.00 0.00 10.99 6.23 G/E LO STR 0.500 0 0.00 0.00 9.03 6.65 N/E LO STR 0.500 0 0.00 0.00 9.00 0.00 T O T A L L U B O I L 0.00 0.00 0.00 0.00 0.00 T O T A L L U B O I L 0.00 0.00 0.00 0.00 0.00 T O T A L L U B O I L 0.00 12.28 -1.09 5.67 3	OTHER ITEMS - T/M*3 TOT IN TOT UGG LOG TOG F.S.K LUBOIL TANKS 0.900 0 0.00 0.00 25.00 4.03 NOLCYLOSTR 0.900 0 0.00 0.00 25.00 4.03 NO2 CYLOSTR 0.900 0 0.00 0.00 25.00 4.03 NO2 CYLOSTR 0.900 0 0.00 0.00 15.2 7.26 N/E LOSTR 0.900 0 0.00 0.00 11.49 6.23 G/E LOSTR 0.900 0 0.00 0.00 11.99 6.23 G/E LOSTR 0.900 0 0.00 0.00 0.00 0.00 T O T AL L U B 0.1 L 0.00 0.00 0.00 0.00 F R E S H WA T E R T A N K S INOTE: Underlined FSM denotes use of maximum FSN FWT P 1.000 15 0.00 12.44 0.07 COOLING I									
S.G. % WEIGHT VCG LCG TCG F.S.M. LUBOIL TANKS TOT In Tonnes (H) (H) (H) (H) (H) NOICYLOSTR 0.900 0 0.00 0.00 25.00 4.03 NOZCYLOSTR 0.900 0 0.00 0.00 25.00 4.03 N/ELOSTR 0.900 0 0.00 0.00 11.09 6.23 G/ELOSTR 0.900 0 0.00 0.00 11.09 6.23 G/ELOSTR 0.900 0 0.00 0.00 11.09 6.23 G/ELOSTR 0.900 0 0.00 0.00 0.00 0.00 TOTALLUB 0.900 0 0.00 0.00 0.00 0.00 TOTALLUB 0.900 0 0.00 0.00 0.00 0.00 TOTALLUB 0.900 1 0.000 12.28 -1.09 5.67 3 FWTS 1.000 <td< th=""><th>S.G. 4 WEIGHT VCG LOS TOC F.S.M LUBOIL TANKS INTONES (M) (M) (M) (H) (H)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	S.G. 4 WEIGHT VCG LOS TOC F.S.M LUBOIL TANKS INTONES (M) (M) (M) (H)									
- OTHER ITERS - T/M*3 TOT In Tonnes (H)	- OTHER ITES - TARS TOT In Tonnes (N) (N)			S.G.	8	WEIGHT	VCG	LCG	TCG	F.S.M.
L U B O I L TANKS NOI CYL O STR 0.900 0 0.00 0.00 25.00 4.03 NO2 CYL O STR 0.900 0 0.00 0.00 15.82 7.26 N/E LO STR 0.900 0 0.00 0.00 11.06 6.23 G/E LO STR 0.900 0 0.00 0.00 0.00 11.06 6.23 G/E LO STR 0.900 0 0.00 0.00 0.00 16.20 0.00 T O T A L L U B O I L 0.00 0.00 0.00 18.20 0.00 F R E S H WATER TANKS FWT P 1.000 68 100.00 12.41 0.94 -6.18 9 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 1 COOLING 1.000 75 20.00 4.30 6.53 0.00 15 T O T A L F R E S H WATER 1.000 75 20.00 4.30 6.53 0.00 15 T O T A L F R E S H WATER 1.000 75 20.00 4.30 6.53 0.00 15 T O T A L F R E S H WATER 5 Note: Underlined FSM denotes use of maximum FSM MOTE: Underlined FSM denotes use of maximum FSM SWT S 1.000 75 20.00 4.30 6.53 0.00 15 T O T A L F R E S H WATER 1.000 15 T O T A L F R E S H WATER 5 Note: Underlined FSM denotes use of maximum FSM	L UB OIL TANKS NOI CYL O STR 0.900 0 0.00 25.00 4.03 NO2 CYL O STR 0.900 0 0.00 25.00 1.00 N/E LO STR 0.900 0 0.00 0.00 15.82 7.26 N/E LO STR 0.900 0 0.00 0.00 13.43 7.05 G/E LO STR 0.900 0 0.00 0.00 13.43 7.05 G/E LO STR 0.900 0 0.00 0.00 11.05 6.23 G/E LO STR 0.900 0 0.00 0.00 9.00 0.00 0.00 10.00 T O T A L L U B O I L 0.00 0.00 0.00 0.00 0.00 FR E S H W AT E R T A N K S Inter Underlined FSM denotes use of maximum FSP FWT S 1.000 75 20.00 12.28 -1.09 5.87 DISTILL W TK 1.000 75 20.00 4.30 6.53 0.00 T O T A LF	- OTHER ITEMS	-	1/M^3	101	in Tonnes	(M)	(M)	(M)	(T-M)
NOI CYL O STR 0.900 0 0.00 0.00 25.00 4.03 NO2 CYL O STR 0.900 0 0.000 0.00 25.00 1.00 N/E LO STR 0.900 0 0.00 0.00 13.43 7.05 G/E LO STR 0.900 0 0.00 0.00 11.05 6.23 G/E LO STR 0.900 0 0.00 0.00 18.20 0.00 T O T A L L U B O I L 0.00 0.00 0.00 18.20 0.00 T O T A L L U B O I L 0.00 0.00 0.00 0.00 0.00 F R E S H W A T E R T A N K S FWT F 1.000 59 45.00 12.28 -1.09 5.87 3 FWT S 1.000 68 100.00 11.241 0.94 -6.18 9 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 11 DISTILL W TK 1.000 11 5.00 11.38 1.10 -1.90 29 Note: Underlined FSM denotes use of maximum FSM Note: Underlined FSM denotes use of maximum FSM	NOL CZL O STR 0.900 0 0.00 0.00 25.00 4.03 NO2 CYL O STR 0.900 0 0 0.00 0.00 25.00 1.00 H/E LO STR 0.900 0 0.00 0.00 15.82 7.26 H/E LO SET 0.900 0 0.00 0.00 11.05 6.23 G/E LO STR 0.900 0 0.00 0.00 0.00 11.05 6.23 G/E LO STR 0.900 0 0.00 0.00 0.00 18.20 0.000 T O T A L L U B O I L 0.00 0.00 0.00 0.00 0.00 Note: Underlined FSM denotes use of maximum FSM FNT P 1.000 68 100.00 12.41 0.94 -6.18 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 COOLING 1.000 75 20.00 4.30 6.53 0.00 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 Note: Underlined FSM denotes use of maximum FSM Note: Underlined FSM denotes use of maximum FSM	LUB OIL T	ANK	S					1	
NO2 CTL O STR 0.900 0 0.00 0.00 15.82 7.26 N/E LO STR 0.900 0 0.00 0.00 13.43 7.05 G/E LO STR 0.900 0 0.00 0.00 11.05 6.23 G/E LO STR 0.900 0 0.00 0.00 0.00 11.05 6.23 G/E LO STR 0.900 0 0.00 0.00 0.00 0.00 T O T A L L U B O I L 0.00 0.00 0.00 0.00 0.00 T O T A L L U B O I L 0.00 0.00 0.00 0.00 0.00 FR E S H WATER TANKS FWT P 1.000 55 45.00 12.28 -1.09 5.87 3 FWT S 1.000 68 100.00 12.44 0.94 -6.18 9 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 11 COLING 1.000 75 20.00 4.30 6.53 0.00 15 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 29 Note: Underlined FSM denotes use of maximum FSM	NO2 CTL 0 STR 0.900 0 0.00 25.00 1.00 M/E LO STR 0.900 0 0.00 0.00 15.82 7.26 M/E LO STR 0.900 0 0.00 0.00 13.43 7.05 G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 G/E LO STR 0.900 0 0.00 0.00 10.00 16.20 0.00 T O T A L L U B 0 I L 0.00 0.00 0.00 0.00 T O T A L L U B 0 I L 0.00 12.22 -1.09 5.87 FWT S 1.000 55 450.00 12.24 -0.94 -6.18 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 CODLING 1.000 75 20.00 4.30 6.53 0.00 T O T A L F R E S H	NO1 CYL O STR		0.900	0	0.00	0.00	25.00	4.03	0
N/E LO STR 0.900 0 0.00 0.00 15.82 7.26 N/E LO SET 0.900 0 0.00 0.00 13.43 7.05 G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 G/E LO SET 0.900 0 0.00 0.00 18.20 0.00 T O T A L L U B O I L 0.00 0.00 0.00 0.00 T O T A L L U B O I L 0.00 0.00 0.00 0.00 FR E S H WA T E R T A N K S TA N K S TA T A N K S TA T A N K S FWT P 1.000 59 45.00 12.28 -1.09 5.87 3 DISTILL W TK 1.000 T5 20.00 4.30 6.53 0.00 15 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 29 Note: Underlined FSM denotes use of maximum FSM	N/E LO STR 0.900 0 0.00 0.00 15.82 7.26 N/E LO SET 0.900 0 0.00 0.00 11.03 7.05 G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 G/E LO STR 0.900 0 0.00 0.00 9.03 6.65 N/E LO SUMP 0.900 0 0.00 0.00 0.00 0.00 T O T AL L U B O I L 0.00 0.00 0.00 0.00 0.00 0.00 FR ES H WATER TANKS Note: Underlined FSM denotes use of maximum FSN FWT P 1.000 59 45.00 12.28 -1.09 5.87 FWT S 1.000 11 5.00 11.16 2.43 6.07 COOLING 1.000 75 20.00 4.30 6.35 0.00 T O T A L F R E 5 H W ATE R 170.00 1.38 1.10 -1.90 1.00 Note: Underlined FSM denotes use of maximum FSN	NO2 CYL O STR		0.900	0	0.00	0.00	25.00	1.00	0
N/E LO SET 0.900 0 0.00 0.00 13.43 7.05 G/E LO STR 0.900 0 0.00 0.00 11.43 7.05 G/E LO SET 0.900 0 0.00 0.00 11.09 6.23 M/E LO SUMP 0.900 0 0.00 0.00 11.09 6.23 T O T A L L U B O I L 0.00 0.00 0.00 0.00 T O T A L L U B O I L 0.00 0.00 0.00 0.00 FR E S H WATER T A N K S Inderlined FSM denotes use of maximum FSM FWT S 1.000 59 45.00 12.28 -1.09 5.67 3 ISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 1 COLLING 1.000 75 20.00 4.30 6.53 0.00 15 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 29 <td>MYE LO SET 0.900 0 0.00 0.00 13.43 7.05 G/E LO STR 0.900 0 0.00 0.00 10.96 6.65 M/E LO SUMP 0.900 0 0.00 0.00 18.43 7.05 M/E LO SUMP 0.900 0 0.00 0.00 18.20 0.00 T O T A L L U B 0 I L 0.00 0.00 0.00 0.00 T O T A L L U B 0 I L 0.00 0.00 0.00 0.00 FRESH WATER TANKS ENTS 1.000 59 45.00 12.28 -1.09 5.87 FWI P 1.000 11 5.00 11.16 2.43 6.07 CODLING 1.000 75 20.00 4.30 6.53 0.00 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 Note: Underlined FSM denotes use of maximum FSh</td> <th>M/E LO STR</th> <td></td> <td>0.900</td> <td>0</td> <td>0.00</td> <td>0.00</td> <td>15.82</td> <td>7.26</td> <td>0</td>	MYE LO SET 0.900 0 0.00 0.00 13.43 7.05 G/E LO STR 0.900 0 0.00 0.00 10.96 6.65 M/E LO SUMP 0.900 0 0.00 0.00 18.43 7.05 M/E LO SUMP 0.900 0 0.00 0.00 18.20 0.00 T O T A L L U B 0 I L 0.00 0.00 0.00 0.00 T O T A L L U B 0 I L 0.00 0.00 0.00 0.00 FRESH WATER TANKS ENTS 1.000 59 45.00 12.28 -1.09 5.87 FWI P 1.000 11 5.00 11.16 2.43 6.07 CODLING 1.000 75 20.00 4.30 6.53 0.00 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 Note: Underlined FSM denotes use of maximum FSh	M/E LO STR		0.900	0	0.00	0.00	15.82	7.26	0
G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 G/E LO STR 0.900 0 0.00 0.00 9.03 6.65 N/E LO SUMP 0.900 0 0.00 0.00 18.20 0.00 T O T A L L U B 0 I L 0.00 0.00 0.00 0.00 FRESH WATER TANKS Mote: Underlined FSM denotes use of maximum FSM FWT P 1.000 59 45.00 12.22 -1.09 5.87 3 FWT S 1.000 68 100.00 12.41 0.94 -6.18 9 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.65 0.00 15 T O T A L F R E S H WA T E R 170.00 11.38 1.10 -1.90 29 Note: Underlined FSM denotes use of maximum FSM	G/E LO STR 0.900 0 0.00 0.00 11.09 6.23 G/E LO STR 0.900 0 0.00 0.00 9.03 6.65 M/E LO SUMP 0.900 0 0.00 0.00 11.09 6.23 T O T A L L U B 0.1 L 0.00 0.00 0.00 0.00 T O T A L L U B 0.1 L 0.00 0.00 0.00 0.00 FRESH WATER TANKS Interview Menotes use of maximum FSb FWT P 1.000 59 45.00 12.28 -1.09 5.87 FWT S 1.000 68 100.00 12.41 0.94 -6.18 DISTILL W TK 1.000 75 20.00 4.30 6.53 0.00 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 Note: Underlined FSM denotes use of maximum FSh	M/E LO SET		0.900	0	0.00	0.00	13.43	7.05	0
G/E LO SET 0.900 0 0.00 0.00 9.03 6.65 M/E LO SUMP 0.900 0 0.00 0.00 0.00 0.00 T O T A L L U B O I L 0.00 0.00 0.00 0.00 0.00 FR E S H WATER T A N K S denotes use of maximum FSM denotes use of maximum FSM FWT P 1.000 59 45.00 12.28 -1.09 5.87 3 FWT S 1.000 68 100.00 12.41 0.94 -6.18 9 DISTILL W TK 1.000 75 20.00 4.30 6.53 0.00 15 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 29	G/E LO SET 0.900 0 0.00 0.00 9.03 6.65 M/E LO SUMP 0.900 0 0.00 0.00 18.20 0.00 T O T A L L U B 0 I L 0.00 0.00 0.00 0.00 FR E S H W A T E R T A N K S Inderlined FSM denotes use of maximum FSP FWT P 1.000 59 45.00 12.28 -1.09 5.87 FWT S 1.000 68 100.00 12.41 0.94 -6.18 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 COOLING 1.000 75 20.00 4.30 6.53 0.00 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 Note: Underlined FSM denotes use of maximum FSN	G/E LO STR		0.900	0	0.00	0.00	11.09	6.23	0
M/E LO SUMP 0.000 0 0.00 0.00 18.20 0.00 T O T A L L U B O I L 0.00 0.00 0.00 0.00 0.00 0.00 FRESH WATER TANKS Note: Underlined FSM denotes use of maximum FSM FWT P 1.000 59 45.00 12.28 -1.09 5.67 3 FWT S 1.000 68 100.00 12.41 0.94 -6.18 9 DISTILL W TK 1.000 75 20.00 4.30 6.53 0.00 15 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 29	MYE LO SUMP 0.900 0 0.00 0.00 0.00 0.00 T O T A L L U B O I L 0.00 0.00 0.00 0.00 0.00 FR E S H WATER T A N K S Inderlined FSM denotes use of maximum FSP FWT P 1.000 59 45.00 12.28 -1.09 5.87 FWT S 1.000 68 100.00 12.41 0.94 -6.18 DISTILL W TK 1.000 75 20.00 4.30 6.53 0.00 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90	G/E LO SET		0.900	0	0.00	0.00	9.03	6.65	0
TOTAL LUBOTIL 0.00 0.00 0.00 0.00 Note: Underlined FSM denotes use of maximum FSM FRESH WATER TANKS 1.000 59 45.00 12.28 -1.09 5.87 3 FWT S 1.000 68 100.00 12.41 0.94 -6.18 9 DISTILL WTK 1.000 75 20.00 4.30 6.53 0.00 15 TOTAL FRESH WATER 170.00 11.38 1.10 -1.90 29	TOTAL LUBO OIL 0.00 0.00 0.00 0.00 NOTE: Underlined FSM denotes use of maximum FSN FWIP 1.000 59 45.00 12.28 -1.09 5.87 FWIS 1.000 66 100.00 12.41 0.94 -6.18 DISTILL WIK 1.000 11 5.00 11.16 2.43 6.07 COOLING 1.000 75 20.00 4.30 6.53 0.00 TOTAL FRESH WATER 170.00 11.38 1.10 -1.90 .	M/E LO SUMP		0.900	0	0.00	0.00	18.20	0.00	0
Note: Underlined FSM denotes use of maximum FSM FRESH WATER TANKS 1.000 59 45.00 12.28 -1.09 5.87 3 FWT S 1.000 68 100.00 12.41 0.94 -6.18 9 DISTILL W TK 1.000 75 20.00 4.30 6.53 0.00 15 T O T A L FRESH WATER 170.00 11.38 1.10 -1.90 29	Note: Underlined FSM denotes use of maximum FSM FRESH WATER TANKS 1.000 59 45.00 12.28 -1.09 5.87 FWT S 1.000 68 100.00 12.41 0.94 -6.18 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 COOLING 1.000 75 20.00 4.30 6.53 0.00 T O T A L F R E S H WATER 170.00 11.38 1.10 -1.90 Note: Mote: Underlined FSM denotes use of maximum FSM	TOTAL	LU	BOIL		0.00	0.00	0.00	0.00	0
FRESH WATER TANKS FWT P 1.000 59 45.00 12.28 -1.09 5.87 3 FWT S 1.000 68 100.00 12.41 0.94 -6.18 9 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 1 COOLING 1.000 75 20.00 4.30 6.53 0.00 15 T O T A L FRESH WATER 170.00 11.38 1.10 -1.90 28 Note: Underlined FSM denotes use of maximum FSM	FRESH WATER TANKS FWT P 1.000 59 45.00 12.28 -1.09 5.87 FWT S 1.000 68 100.00 12.41 0.94 -6.18 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 COOLING 1.000 75 20.00 4.30 6.53 0.00 T O T A L FRESH WATER 170.00 11.38 1.10 -1.90 . Note: Underlined FSM denotes use of maximum FSh					Note: Under	lined FSM	denotes (ise of maxi	mum FSM
FWT P 1.000 S9 45.00 12.28 -1.09 5.87 3 FWT S 1.000 68 100.00 12.41 0.94 -6.18 9 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 1 COOLING 1.000 75 20.00 4.30 6.53 0.00 15 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 29 Note: Underlined FSM denotes use of maximum FSM	FWT P 1.000 S9 45.00 12.28 1.09 5.87 FWT S 1.000 68 100.00 12.41 0.94 -6.18 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 COOLING 1.000 75 20.00 4.30 6.53 0.00 T O T A L FRESH WATER 170.00 11.38 1.10 -1.90 Note: Underlined FSM denotes use of maximum FSP	FRESH WAT	ER	TANKS						
FW1 S 1.000 cs 100.00 12.41 0.94 -6.18 9 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 1 COOLING 1.000 75 20.00 4.30 6.53 0.00 15 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 29 Note: <u>Underlined FSM</u> denotes use of maximum FSM	FW1 S 1.000 cs 100.00 12.41 0.94 -c.18 DISTILL W TK 1.000 11 5.00 11.16 2.43 6.07 COOLING 1.000 75 20.00 4.30 6.53 0.00 T O T A L F R E S H W A T E R 170.00 11.38 1.10 -1.90 Note: Underlined FSM denotes use of maximum FSN	FWT P		1.000	59	45.00	12.28	-1.09	5.87	36
DISILE W IK 1.000 11 5.00 11.16 2.43 6.07 1 COOLING 1.000 75 20.00 4.30 6.53 0.00 15 T O T A L FRESH WATER 170.00 11.38 1.10 -1.90 29 Note: Underlined FSM denotes use of maximum FSM	DISTILL W IK 1.000 11 5.00 11.16 2.43 6.07 COOLING 1.000 75 20.00 4.30 6.53 0.00 T O T A L FRESH WATER 170.00 11.38 1.10 -1.90 . Note: Underlined FSM denotes use of maximum FSN	FWT S		1.000	68	100.00	12.41	0.94	-6.18	92
CODLING 1.00 75 20.00 4.30 6.53 0.00 15 T O T A L FRESH WATER 170.00 11.38 1.10 -1.90 29 Note: Underlined FSM denotes use of maximum FSM	CODLING 1.000 75 20.00 4.30 6.53 0.00 T O T A L FRESH WATER 170.00 11.38 1.10 -1.90 . Note: Underlined FSM denotes use of maximum FSb	DISTILL W TK		1.000	11	5.00	11.16	2.43	6.07	16
Note: Underlined FSM denotes use of maximum FSM	Note: Underlined FSM denotes use of maximum FSM	COULING	DEC	1.000	75	20.00	4.30	6.53	0.00	156
Note: Underlined FSM denotes use of maximum FSM	Note: Underlined FSM denotes use of maximum FSM	IOIAL P	KES	H WAI	ER	170.00	11.38	1.10	-1.90	299

				05 - 03 -	2018 11:	:00:01 Pa	age: 4
CONDIT	ION PROJECT	N.O. TO L	OME				
Seawater Density : 1.02	5 MT/M^3		Strength Condit	ion : SEA (GOING		
	S.G.	olo	WEIGHT	VCG	LCG	TCG	F.S.M.
- OTHER ITEMS -	T/M^3	TOT	in Tonnes	(M)	(M)	(M)	(T-M)
BALLAST WATE	R TAN	КS					
F.P.TK	1.025	0	2.00	0.05	171.63	-0.01	44
NO1 BWT P	1.025	0	4.00	0.02	155.87	4.07	487
NO1 BWT S	1.025	0	4.00	0.02	155.87	-4.07	487
NO2 DBWT P	1.025	1	3.00	0.01	134.40	8.70	98
NO2 DBWT S	1.025	1	3.00	0.01	134.40	-8.70	98
NO2 TBWT P	1.025	1	1.00	10.78	135.00	11.73	0
NO2 TBWT S	1.025	1	1.00	10.78	135.00	-11.73	0
NO3 DBWT P	1.025	1	5.00	0.01	108.60	5.76	1988
NO3 DBWT S	1.025	1	5.00	0.01	108.60	-5.76	1988
NO3 TEWT P	1.025	1	1.00	10.78	108.60	11.73	0
NO3 TEWT S	1.025	1	1.00	10.78	108.60	-11.73	0
NO4 BWI P	1.025	1	5.00	0.12	83.80	10.50	3
NO4 BWI 5	1.025	1	5.00	0.12	83.80	-10.50	3
NOS DEWI P	1.025	2	4.00	0.02	61.59	0.00	01
NOS DEWI S	1.025	1	4.00	10.79	59.00	11 71	
NOS IBWI F	1.025	1	1.00	10.70	59.00	-11 71	0
NOS IBWI S	1.025	1	4.00	0.04	41 90	3 44	136
NOG BWT S	1.025	1	4.00	0.04	41.90	-3.44	136
NO7 DBWT P	1.025	1	3.00	0.01	135.00	4.00	487
NO7 DBWT S	1.025	1	3.00	0.01	135.00	-4.00	487
APT	1.025	0	1.00	7.05	4.99	0.00	25
NO4 C.HOLD/WB	1.025	0	0.00	0.00	83.80	0.00	0
TOTAL BALLA	ST WA	TER	65.00	1.14	101.06	0.00	6630
			Note: Under:	lined FSM	denotes u	se of maxim	mum FSM

	CONDIT	ION'S KG' = 8.	53 METERS						
CROSS CURVES KG = 0.00 METERS									
	RIGHTING A	ARM G'Z = GZ -	GG' SIN (0)						
θ	SIN(0)	GZ	GG' SIN (θ)	G'Z					
10.	0 0.174	1.741	1,482	0.259					
20.	0 0.342	3.511	2.919	0.593					
30.	0 0.500	5.267	4.267	1.000					
40.	0 0.643	6.804	5.486	1.319					
50.	0 0.766	7.937	6.538	1.400					
60.	0.866	8.617	7.391	1.226					
70.	0 0.940	8.870	8.020	0.851					
STABIL	TY CRITERIA (A749)	ACTU	AL VALUE	REQUIRED					
AREA FROM 0 T	O 30 DEG		0.234 M RAD	0.055 M RA					
AREA FROM 0 T	0 40.0 DEG		0.439 M RAD	0.09 M RA					
AREA FROM 30	10 40.0 DEG		0.204 M RAD	0.03 M RA					
MAX DICHTING ARM	AI SU DEG	1 42	EMAT 49 DEC	U.Z M					
INIT METACEN	TRIC HEIGHT	1.42	1 41 M	0 15 M					
GRAIN S	STAB.CRIT.(SOLAS74)	ACTU	AL VALUE	REQUIRED					
INIT METACEN	TRIC HEIGHT		1.41 M	0.30					
ANGLE OF HEEL	1		15.7 DEG	12 DEG. or DK EDG					
				IMMERS ANG = 23.7 DE					
	тмо ыл	FATHER CRITERIA	Res 1 749						
Th (DF)	ANGLE OF HERE DEC	W IMMERSION	Ne3.A. 745	• 23.68 DEG					
Th(DE)*.80	LIGHD OF OFFER DEC			: 18.94 DEG					
Th(F)	ANGLE OF FLOODING			: 47.88 DEG					
A	LATERAL WINDAGE AF	REA (SHIP UPRIGH	(T)	: 1849 M2					
н	WIND PRESSURE LEVE	ER FROM MID DRAF	Т	: 11.717 M					
DW	STEADY WIND HEELIN	IG ARM		: 0.032 M					
Th(0)	RESULTANT ANGLE OF	F EQUILIBRIUM		: 1.299 DEG					
1w2=1.5*1w1				: 0.047 M					
Th(1)	ANGLE OF WINDWARD	ROLL DUE TO WAV	E	: 19.83 DEG					
	ANGLE OF 2nd INTER	RCEPT OF GZ-curv	e WITH 1w2						
Th(c)	MINIMUM OF Th(F) o	or 50 deg or Th((c)	: 47 DEG					
Th (c) Th (2)				: 0.096 M RAD					
Th(c) Th(2) AREA A				: 0.581 M RAD					
Th(c) Th(2) AREA A AREA B									
Th(c) Th(2) AREA A AREA B REQUIREMENTS	: 1) Th(0) should	i be less than l	6deg or 80% of 1	Th (DE)					

GZ CURVE

DEFLECTIONS (SF & BM)

				05 - 03 - 20	018 11:28:01	Page: 1
	CASE 1 :	SEA GOING				
		Max. All.	. SF (MT)	Max. All.	BM (TxM)	
	Frame	(+)	(-)	Sagging	Hogging	
	-6	1019	-1019	-5097	5097	
	35	1733	-1733	-15291	32620	
	60	3109	-3109	-76453	69317	
	93	3150	-3129	-109276	86850	
	122	3109	-3109	-109276	86850	
	155	3109	-3150	-109276	86850	
	188	3109	-3109	-42813	38838	
	213	1600	-1600	-8461	8655	
	CASE 2 :	IN HARBOR				
		Max. All	. SF (MT)	Max. All.	BM (TxM)]
	Frame	(+)	(-)	Sagging	Hogging	
	-6	1233	-1233	-12915	12640	
	35	2803	-2803	-53007	69011	
	60	4679	-4679	-145607	136086	
	93	4343	-4343	-219429	193191	
	122	4302	-4302	-219429	193191	
	155	4720	-4720	-209062	183180	
	188	4811	-4811	-95382	89592	
	213	2253	-2253	-26697	26269	
	CASE 3 :	FLOODING CONDITION				
		Max. All	. SF (MT)	Max. All.	BM (TxM)	
	Frame	(+)	(-)	Sagging	Hogging	
	-6	1060	-1060	-6830	6769]
	35	1906	-2171	-23649	32620	
	60	3415	-4353	-88746	80530	
	93	3415	-3313	-134027	103976	
	122	3364	-3293	-134027	103976	
	155	3822	-3394	-129460	103976	
	188	3364	-3293	-54434	49949	
	213	1733	-1733	-12232	12232	
— M U I	LTILOA	A D				

					05	- 03 - 2018	11:00:01	Page: 7	1
i i			CONDITION PROJECT N	.O. TO LOME					
Seawa	ater De	nsity	: 1.025 MT/M^3	Stre	ength Condition	: SEA GOING			
		+++	S.F. ''' S.F. 1	Max.All	*** B.M.	B.M.	Max.All		
FRM	S.F.	=	= = Bulkhead Corre	ction	(+ HOG, - SAG		B.M.	FRM
AE -1	0 -			. 2	· · ·			- 0	AE -1
3	195				÷+ •			747	3
8	244			- "	* + '			1508 2001	8
16	232		•		* +	•		3075	16
19 23	165			.	*+ -	·.		3633 4068	19
27	-109			. +	*	•		4065	27
30 35	-227			+	*			3744 2350	30
37	-575			+. *				1514	37
41 45	-677		· · ·	+ *		· . ·		-380	41
48	-882		• • •	*		-	1.	-4545	48
52 55	-1042 -1175	î	. +	*		•	1	-7513 -10091	52 55
60	-1401'		+	*				-15108	60
63 66	-1126 -992	÷.,	. +	*		· · ·		-18058	63
70	-830	· · * .		+ *			1.1	-23322	70
74	-666 -541.			* +				-25606	74
81	-374.			* +			- 11 g	-28329	81
84	-248.			* +			1.1.4	-28994	88
93	241!			*	- +			-28950	93
95	-86.			* +	+		1.1	-28588	95
102	-256.			* +			1.1	-28718	102
1108	-712.			+			1	-31596	1108
113	-884.		*+				1 A 1 A	-33430	113
122	-1367!		+*-					-41349	122
124	-1166.	·	*+ * +				1 A 1	-43321	124
131	-903.		* +				1.0	-48910	131
135	-756. -645		*	+			. ¹	-51455	135
142	-495.		*	. +			1	-54768	142
146 149	-342.	.'	*	+			1.1	-55998	146
155	230 :		*		- +			-56427	155
157 160	326 467	1	*		+ +		. 1. J. 1	-55927 -54893	157
164	651	÷	*		+			-52994	164
167 172	785 999	· · · .	- *		+ +			-51189 -47484	167 172
175	1123		- *		+		1	-44856	175
178 182	1243 1397	- C	*			+ .	· · ·	-41936 -37602	178 182
186	1600	•				. +		-32697	186
188	1794'		*	*		+		-29927	188
196	1439			. *		+		-19353	196
200	1260		· · ·	*	. +	· ·	-	-14926 -11043	⊿00 204
207	991			-*	. +			-8454	207
213	678			.*	+			-45/1 -3106	213
221	371			. *	· .+	:		-1431	221
226	29			- * - X	т. с.			-532	226
FE	0 ·		MAX S E DEDCE	TACE TO MIT	OWARLE = 50 P	AT FDAME 100		- 0	FE
			MAX B.M. PERCE	NTAGE TO ALL	LOWABLE = 71 %	AT FRAME 188			
	MUL	TILO	A D						

145

HOLD MASS TABLES

				0	5 - 03 - 201	18 11:00:0)1 Page: 8	8
CONDITION PROJECT N.O. TO LOME								
Seawater Density : 1.025 N	MT/M^3	S	trength	Conditio	n : SEA GOIN	1G		
LOCAL	LOJ	DING	DIA	GRAM	S ANA	LYSIS		
DIAGRAM	MEAN	CARGO	F. O.	W. B.	SUM OF	MIN REQ.	MAX. PERM.]
Seagoing	DRAFT	MASS (MT)	WT (MT)	WT (MT)	MASS (MT)	MASS (MT)	MASS (MT)	
NO1 C.HOLD	9.40	2400	0	0	2400	354	6873	OK
NO1s2 C.HOLDS	9.40	8778	0	0	8778	1763	11127	OK
NO2 C.HOLD	9.40	6378	0	0	6378	0	6465	ок
NO2&3 C.HOLDS	9.40	12527	0	0	12527	1996	13865	OK
NO3 C.HOLD	9.40	6149	0	0	6149	467	11002	OK
NO3&4 C.HOLDS	9.40	8949	0	0	8949	1912	13642	ок
NO4 C.HOLD	9.40	2800	0	0	2800	0	6241	ок
NO4&5 C.HOLDS	9.40	8947	0	0	8947	1912	13639	ок
NO5 C.HOLD	9.40	6147	0	0	6147	468	12575	ок
NO5&6 C.HOLDS	9.40	8474	0	0	8474	1772	11470	ок
NO6 C.HOLD	9.40	2327	0	0	2327	0	4073	ок
	I							

- MULTILOAD -

GRAIN STABILITY, SEA GOING CRITERION

NATIONAL CARGO BUREAU, INC.

GRAIN STABILITY CALCULATION

			YEAR BUILT AT	ſ		
		NET TONNAGE	OFFICIAL NO.			
	-					
AGENT						
GRAIN LOADING BOOKLE	T APPROVED BY					
DRAWING NO.		DATE OF APPROVAL				
APPLICABLE REGULATIO	DNS					
ADDENDUM FOR UNTRIMM	MED ENDS APPROV	ÆD BY				
DRAWING NO.		DATE OF APPROVAL				
LOADING PORT						
BUNKERING PORTS						
DISCHARGE PORT						
STEAMING DISTANCE		MILES PER DAY	TIME			
DAILY CONSUMPTION: F	TUEL	DIESEL	WATER			
DIS	SPLACEMENT	DEADWEIGHT	DRAFT	FREEBOARD		
WINTER	38544	30004	10.199	4.445		
SUMMER	39440	30899	10.416	4.228		
TROPICAL	40337	31796	10.633	4.011		
FRESH WATER ALLOWANC	CE 0.239 TPC (#	AT SUMMER DRAFT) 41.297				
THIS IS TO CERTIFY T	THAT:					
1. THIS CALCULA	TION IS PREPAR	ED IN ACCORDANCE WITH THE REQUIR	EMENTS			
OF THE VESSE	L'S GRAIN LOAD	DING BOOKLET AND THE APPLICABLE G	GRAIN			
REGULATIONS						
2. THE STABILIT	Y OF THE VESSE	L WILL BE MAINTAINED THROUGHOUT	THE			
VOYAGE IN AC	CCORDANCE WITH	THIS CALCULATION.				
CALCULATION PREPARED BY:						
				MASTER		
		EXAMINE	D:			
		DATE	N.C.	.B. SURVEYOR		
		DATE:				

NOTE: ORIGINAL STABILITY CALCULATION AND GRAIN ARRANGEMENT PLAN TO BE SUMITTED TO THE N.C.B. SURVEYOR. ALL TONNAGES USED IN THESE CALCULATIONS SHALL BE SHOWN IN THE SAME UNITS AS USED IN THE GRAIN LOADING BOOKLET.

COMPARTMENT	CARGO	S.F.	GRAIN	CUBICS			
NAME	TYPE	(M^3/MT)	100%	ACTUAL	WEIGHT	V.C.G.	MOMENT
NO1 C.HOLD	GRAIN1	1.203	4663	2888	2400	5.90	14160
NO2 C.HOLD	GRAIN1	1.203	7675	7675	6378	8.43	53762
NO3 C.HOLD	GRAIN1	1.203	7400	7400	6149	8.49	52205
NO4 C.HOLD	GRAIN1	1.203	6242	3370	2800	5.38	15075
NO5 C.HOLD	GRAIN1	1.203	7397	7397	6147	8.49	52184
NO6 C.HOLD	GRAIN1	1.203	5258	2800	2327	5.74	13363
NO1 ON HATCH			1201	0	0	0.00	0
NO2 ON HATCH			2869	0	0	0.00	0
NO3 ON HATCH			2869	0	0	0.00	0
NO4 ON HATCH			2504	0	0	0.00	0
NO5 ON HATCH			2869	0	0	0.00	0
NO6 ON HATCH			1997	0	0	0.00	0

SHIP	AND	CARGO	CALCULATION

THIS CALCULATION IS	CARGO TOTALS	26200	7.66	200748
PREPARED IN:	LIGHT SHIP	8541	10.10	86270
[] ENGLISH UNITS	STORES	0	0.00	0
[x] METRIC UNITS				
	SHIP AND CARGO TOTALS	34741		287018

CARGO PLAN: INDICATE HOLDS, TWEEN DECKS, ENGINE SPACES, FITTINGS, STOWAGE,

TONNAGES, ETC.

PART I

PART II

IN THIS PART YOU CAN EXAMINE DEPARTURE, INTERMEDIATE OR ARRIVAL CONDITION. INTERMEDIATE SECTION IS REQUIRED TO BE COMPLETED IF ARRIVAL SECTION SHOWS IS JUST PRIOR TO BALLASTING WHICH INCLUDES THE EFFECT OF FREE SURFACE BUT NOT EFFECT OF WEIGHT OF THE BALLAST WHICH IS TO BE TAKEN ABOARD.

TANK	TYPE	WEIGHT	V.C.G.	MOMENT	F.S.
	LIQUID				MOMENT
NO1 HFO T	F.O.	40	3.	120	100
NO2 HFO T P	F.O.	10	.02		1381
NO2 HFO T S	F.O.	10	.02		1381
NO3 HFO T P	F.O.	10	.05	1	296
NO3 HFO T S	F.O.	40	.21	8	296
NO4 HFO P(LS)	F.O.	5	.05		169
NO4 HFO S(LS)	F.O.	5	.05		169
NO2 HFO SETTL	F.O.	15	11.61	174	21
NO2 HFO SERV	F.O.	15	11.66	175	18
NO1 HFO SERV	F.O.	7	11.33	79	11
NO1 HFO SETTL	F.O.	7	11.26	79	10
NO1 HFO OVRFL	F.O.	2	13.85	28	9
MDO STOR P	D.O.	55	.81	45	130
MDO STOR S	D.O.	55	.81	45	130
MDO SERV	D.O.	11	8.41	92	5
MDO SETTL P	D.O.	9	7.74	70	15
FWI P	F.W.	45	12.28	552	36
FWI S	F.W.	100	12.41	1241	92
DISTILL W TK	F.W.	5	11.16	56	16
COOLING	F.W.	20	4.3	86	156
F.P.TK	B.W.	2	.05		44
NO1 BWT P	B.W.	4	.02		487
NO1 BWT S	B.W.	4	.02		487
NO2 DBWT P	B.W.	3	.01		98
NO2 DBWT S	B.W.	3	.01		98
NO2 TBWT P	B.W.	1	10.78	11	
NO2 TBWT S	B.W.	1	10.78	11	
NO3 DBWT P	B.W.	5	.01		1988
NO3 DBWT S	B.W.	5	.01		1988
NO3 TBWT P	B.W.	1	10.78	11	
NO3 TBWT S	B.W.	1	10.78	11	
NO4 BWT P	B.W.	5	.12	1	3
NO4 BWT S	B.W.	5	.12	1	3
NO5 DBWT P	B.W.	4	.02		81
NO5 DBWT S	B.W.	4	.02		81

Continue ...

PART II (continued)

TANK	TYPE	WEIGHT	V.C.G.	MOMENT	F.S.
	LIQUID				MOMENT
NO5 TBWT P	B.W.	1	10.78	11	
NO5 TBWT S	B.W.	1	10.78	11	
NO6 BWT P	B.W.	4	.04		136
NO6 BWT S	B.W.	4	.04		136
NO7 DBWT P	B.W.	3	.01		487
NO7 DBWT S	B.W.	3	.01		487
APT	B.W.	1	7.05	7	25

11072	2925	531	TOTALS LIQUIDS
	287018	34741	SHIP AND CARGO
	289943	35272	GRAND TOTALS DISPLACEMENT
		8.220	KG
		0.314	FREE SURFACE CORR. (+)
		9.942	KM
		8.534	KGv
		1.408	GM
		0.300	REQUIRED MINIMUM GM
		NOTES	

(1) FREE SURFACE CORR. = <u>SUM OF FREE SURFACE INERTIA MOMENTS</u> DISPLACEMENT

(THIS CORRECTION MUST BE APPLIED TO ALL SHIPS.)

PART III					
		VOLUMETRIC		GRAIN	
	STOW-	GRAIN	HEELING	S.F.	HEELING
COMPARTMENT	AGE	DEPTH	MOMENT	(M^3/MT)	MOMENT
NAME	(1)	(M)	(M^4)	(2)	(M.TM.)
NO1 C.HOLD	PF	8.16	4777	1.203	3969
NO2 C.HOLD	PF	14.50	374	1.203	311
NO3 C.HOLD	PF	14.50	374	1.203	311
NO4 C.HOLD	PF	7.11	7945	1.203	6601
NO5 C.HOLD	PF	14.50	374	1.203	311
NO6 C.HOLD	PF	7.49	6482	1.203	5386
NO1 ON HATCH		0.00	0		0
NO2 ON HATCH		0.00	0		0
NO3 ON HATCH		0.00	0		0
NO4 ON HATCH		0.00	0		0
NO5 ON HATCH		0.00	0		0
NO6 ON HATCH		0.00	0		0
			20325		16889

STABILITY SUMMARY

(1) UNDER STOWAGE INDICATE "F" FOR FILLED COMPARTMENTS,

- 'F-UT' FOR FILLED COMPARTMENTS UNTRIMMED,
- 'PF' FOR PARTLY FILLED COMPARTMENTS,
- 'SEC' FOR SECURED OR OVERSTOWED COMPARTMENTS.
- (2) THE STOWAGE FACTOR USED IN PART III SHALL NOT EXCEED THE VOLUME PER UNIT WEIGHT (TEST WEIGHT) OF THE GRAIN. IF STOWAGE FACTOR IS SAME IN ALL COMPARTMENTS, DIVIDE TOTAL VOLUMETRIC HEELING MOMENT BY STOWAGE FACTOR OR MULTIPLY BY DENSITY TO OBTAIN GRAIN HEELING MOMENT. IF STOWAGE FACTOR VARIES, OBTAIN GRAIN HEELING MOMENT FOR EACH COMPARTMENT.

FOR VESSELS APPROVED UNDER:

REGULATION 4, CHAPTER VI, SOLAS 1974 or REGULATION 4, IMCO RESOLUTION A.264(VIII),SOLAS 1960 or REGULATION 4, IMCO RESOLUTION A.184(VI),SOLAS 1960

DISPLACEMENT (MT)	35272
KGv (M)	8.534
TOTAL GRAIN HEELING MOMENT (MT-M)	16889
MAXIMUM ALLOWABLE HEELING MOMENT (MT-M)	11938

10.6- APPENDIX 6

EXCEL SPREADSHEET WITH CALCULATION OF THE PERIOD OF ROLL USING VARIOUS METHODS

CALCULATION OF ROLL PERIOD OF THE VESSEL USED AS MODEL ARRIVAL WITHOUT BALLAST

METHOD PROPOSED BY E.C. TUPPER (BASIC SHIP THEORY)

DATA

PARAMETERS	SYMBOL	VALUE	<u>UNIT</u>
DRAFT EXREME	Т	9.4000	Μ
KEEL THICKNESS	KT	0.0160	Μ
GM FLUID	GM	1.4100	Μ
F (CONSTANT)	F	0.1250	
BREADTH EXTREME	В	23.7000	Μ
DEPTH EXTREME	D	14.6440	Μ
LENGTH OVERALL	L	185.0000	Μ
LENGTH BET PERP	L PP	178.0000	Μ
BLOCK COEFFICIENT	СВ	0.8663	
			M X SEC ²
GRAVITY	g	9.806	5
PI	π	3.1416	

PARAMETERS TO CALCULATE

FORMULA

LENGTH SUPERST	L SUPERST	19.2000	Μ	From frame 35-11 = 24 frames X 0.8M = 19.2M
WIDTH SUPERST	W SUPERST A	13.8500	М	31.95 - 18.1 = 13.85 (from GA, heights over BL) A ERECTIONS = L SUPERST x W
AREA ERECTIONS	ERECTIONS	265.9200	Μ	SUPERST x COS 0
LENGTH DECK	L DECK	139.8000	Μ	Fr 209-35 = 174 frs x 0.8M = 139.2 + 1fr x 0.6M = 139.8 M
WIDTH DECK	W DECK	0.5000	Μ	Camber = 0.5
AREA DECK	A DECK A	69.9000	M2	A DECK = L DECK x W DECK x COS 0
AREA FREEBOARD	FREEBOARD	933.4320	M2	A FREEBOARD = L PP x (D-T) A = (A ERECTIONS + A DECK + A
AREA LATERAL PROJECT DECK	A1	1269.2520	M2	FREEBOARD)
WINDAGE LATERAL A	A2	1849.0000	M2	FROM COMPUTER RESULTS (APPENDIX
EFFECTIVE DEPTH	H1	21.7746	Μ	H = D + A1/LPP

EFFECTIVE DEPTH	H2	25.0316	Μ	H = D + A2/LPP
DECK COEFFICIENT	CU	0.000228	Μ	CU = 1/LB
DRAFT MOULDED	TM	9.3840		TM = T - KT
RADIUS OF GYRATION	K1	7.6995	M	$K = B x \sqrt{F \left[C_B C_U + 1.10 C_U \left(\frac{H}{T} - 2.20 \right) + \frac{H^2}{B^2} \right]}$
RADIUS OF GYRATION	K2	8.8513	M	
PERIOD OF ROLL 1	тф	13.0099	SEC	$T_{\phi} = 2 \pi \frac{K}{(g GM_T)^{\frac{1}{2}}}$
PERIOD OF ROLL 2	тф	14.9560	SEC	

METHOD PROPOSED BYA.B.BIRAN (SHIP HYDROSTATICS AND STABILITY)

PARAMETERS	SYMBOL	VALUE	UNIT			
GM FLUID	GM	1.4100	Μ			
BREADTH EXTREME	В	23.7000	Μ			
PARAMETERS TO CALCULATE				FORMULA		
RADIUS OF GYRATION	im	7.9000	М	im = B/3	Costaguta, 1981	
	im	8.2950	Μ	im = 0.35B	Shipyard	
CONSTANT	С	0.6667		C = 2im/B	for Costaguta	
	С	0.7000		C = 2im/B	for shipyard	
PERIOD OF ROLL	тφ	13.3060	SEC	$T_{+} = \frac{cB}{cB}$	for Costaguta	MEAN VALUE
	тΦ	13.9713	SEC	^{−ψ} √GM	for shipyard	13.6386504

METHOD PROPOSED BY ISC / WAWRZYNNSKI AND KRATA

PARAMETERS	SYMBOL	VALUE	<u>UNIT</u>
GM FLUID	GM	1.4100	Μ
BREADTH EXTREME	В	23.7000	Μ
DRAFT EXREME	Т	9.4000	Μ
LENGTH WATERLINE	L WL	181.9400	М

PARAMETERS TO CALCULATE

CONSTANT	С

C = 0.373 + 0.023B/T - 0,043L/100

0.3528

PERIOD OF ROLL	тΦ	14.0813	SEC	$T_{\phi} = \frac{2cB}{\sqrt{GM}}$
----------------	----	---------	-----	------------------------------------

CALCULATION OF ROLL PERIOD OF THE MODEL

METHOD PROPOSED BYA.B.BIRAN (SHIP HYDROSTATICS AND STABILITY)

PARAMETERS	SYMBOL	VALUE	UNIT			
GM FLUID	GM	0.0353	Μ			
BREADTH EXTREME	В	0.5925	Μ			
PARAMETERS TO CALCULATE				FORMULA		
RADIUS OF GYRATION	im	0.0049	М	im = B/3	Costaguta, 1981	
	im	0.0052	Μ	im = 0.35B	Shipyard	
CONSTANT	C	0 6667		C = 2im/P	for Costaguta	
CONSTANT	C	0.0007		C = 2IIII/B	for costaguta	
	C	0.7000		C = 2IM/B	Ior snipyard	for ICC / MRK
	C	0.4290		C = 0.373 + 0.02	38/1-0,0431/100	IOFISC / W&K
PERIOD OF ROLL	тФ	2.1039	SEC	cB	for Costaguta	MEAN VALUE
	тф	2.2091	SEC	$T_{\phi} = \frac{GB}{\sqrt{GM}}$	for shipyard	2.34026786
	тΦ	2.7079	SEC		for ISC/W&K	

10.7- APPENDIX 7

COHESION EXPERIMENT (VANDEWALLE ET LUMAY)

Insert 1: The cohesion

Both pictures represent a heap of sugar. In the left picture, the size of the grains is around 0.5 mm. In this case, the shape of the heap is fixed by the geometry of the grains and and by the frictional forces between the grains. When the grains size is smaller than typically 50 μ m, the cohesive forces related to the humidity, to the electric charges and to the Van der Waals interactions become higher than the weight of one grain. Then, the cohesive forces influence strongly the macroscopic properties of the heap.

10.8- APPENDIX 8

ORIGINAL TAGS WITH DATA OF SAMPLES USED

Experimental investigation of the dynamic angle of grain sliding and its impact on ship's safety

